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NATTONAL ADVISORY COMMITTEE FOR AERORAUTICS

TECHENICAT, MEMORANDUM NO. 1218

LECTURE SERTES "BOUNDARY LAYER THEORY"
Part IT — Turbulent Flows*
By H. Schlichting

CHAPTER XIIT. GENERAL REMARKS ON TURBULENT FLOWS
a. Turbulent Pipe Flow

The flow laws of the actual flows at hlgh Reynolds numbers differ
consilderably from those of the leminar flows treated in the preceding
part. These actusl flows show a speclal characteristic, denoted as
"turbulence.”

The charsascter of a turbulent flow 1s most easlly understood in
the case of the pipe flow. Consider the flow through a straight pipe of
circular cross section and wlth a smooth wall. For laminar flow each
fluid particle moves with uniform velocity along a rectilinear path.
Because of viscosity, the velocity of the particles near the wall is
smaller than that of the partlicles at the center. In order to malntain
the motion, a pressure decrease 1s required which, for laminar flow, 1s
proportional to the first power of the mean flow velocity (compare
chapter I, Part I). Actually, however, one observes that, for larger
Reynolds num'bers , the pressure drop increases almost wi'bh the square of
the veloclty and ig very much larger than that given by the Hagen—
Poiseullle law. One may conclude that the actual flow 1s very different
from that of the Poiseullle flow.

The following test, introduced by Reynolds, 1s very lnstructive:
If one inserts into the flowlng fluid a colored filament one can observe,
for small Reynolds numbers, that the colored filsment s malntained down—
stream ag & sharply defined thread. One may conclude that the fluid
actually flows as required by the theory of laminer flow: a gliding
along, slde by side, of the adjolning layers without mutual mlxing
(laminer = layer flow). For large Reynolds numbers, on the other hand,
one cen observe the colored filament, even at a small distance downstream
from the inlet, distributed over the entire cross sectlon, that is, mixed

*"Vortragséreihe 'Grenzschichttheorie.' Teil B: Turbulente Strdmungen.”
Zentrale fiUr wissenschaftliches Berichtswesen der Iuftfehrtforschung des
Generalluftzeugmeisters (ZWB) Berlin-Adlershof, pp. 154—279. The
original lenguage version of this report is d.ivided into two main parts,
Tell A and Tell B, which have been translated as separate NACA Technical
Memorandums, Nos. 1217 and 1218, designated Part I and Part IT, respectively.
This report is a continuatbtion of the lecture series presented in part I, the
equations, figures, and tables being numbered in sequence from the first
part of the report. For general information on the serles, reference
should be made to the preface and the introductlon of Part I. .
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to a great extent with the rest of the fluld. Thus the flow character A
has changed completely for large Reynolds numbers: A pronounced

transverse mixing of adjacent layers takes place. Irregular additlonal

velocitles in the longltudinal and transverse directiong are superposed —
on the maln velocity. This state of flow 1s called turbulent. As a ’
consequence of the mixing the veloclity 1s distributed over the cross .
section more uniformly for turbulent than for laminar flow (compare fig. 17,

part I). For turbulent flow there exists a very steep velocity increase

in the immediate nelghborhood of the wall and almost constant velocity in

the central regions., Consequently the wall shearing stress ls considerably

larger for turbulent then for laminar flow; the same applies to the drag.

This follows also from the. fact that in turbulent flow a considerable

part of the energy ls used up in maintaining the turbulerit mixing motion.

The exact analysis of a turbulent flow shows that at a point fixed
in gpace the velocity 1s subjected to strong Irregular fluctuations with
time (fig. 72). If one measures the variation with time of a velocity
component at a fixed point In space, one obtains, gqualitatively, a
varlation as shown in figure T72. The flow 1s steady only on the average
end may be interpreted as composed of a temporal mean value on which the
irregular fluctuation velocitles sre superimposed.

The first extensive experimsental Investigatlons were carrled out
by Darcy (reference 60) in comnection with the preliminary work for a .
large water—dlstributing system for the clty of Paris. The firsgt gquanti-
tative experiments concerning laminar pipe flow were made by Hagen
(reference 95). The first systematic tests regarding the transition from
laminar to turbulent flow were made by Osborn Reynolds (reference 61).
He determined by experiment the connection between flow volume and pressure
drop for turbulent flow and investigated very thoroughly the transition
of the laminar to the turbulent form of flow. He found, Iin tests of
various veloclities and in pipes of various dlameters, that transition

always occurred at the same value of the Reynolds number: %%. This

Reynolde number is called the critical Reynolds_number. The measurements _
gave Tor the plpe flow: '

For Re < Re,nit the flow is laminar, for Re > Re,niy, turbulent. TLater

on it was ascertained that the numerical value of Re,.si 1is, moreover,

very dependent on the perticular test conditions. If the entering flow _
was very free of disturbances, laminer flow could be maintained up to

Re = 24000. However, of main Interest for the technical applications )

is the lowest critical Reynolds number existing for an arbltrary disturbance h
of the entering flow, due either to irregularities in the approaching flow :
or to'vortices forming at the pipe Inlet. Concerning the drag law of the -
pipe Reynolds found that the pressure drop is proportionsl to the 1,73

power of the mean flow velocity: k|

pp ~wc T3 o
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b. Turbulent Boundary layers

Recently 1t was determined that the flow along the surface of a body
(boundary layer flow) also can be turbulent. We had found,for instance,
for the flat plate in longitudinel flow thet the drag for laminar flow is

proportional to \/Ub3 (compare eguation (9.18), Part I.) However, towing
tests on plates for large Reynolds numbers carried out by Frouds

(reference 96) resulted in a drag law according to which W~ Ubl'85. More—
over, the drag coefficlents in these measurements remasined considerably
higher than the drag coefflcient of the laminar plate flow according to
equation (9.19), Part I. Presumebly this deviatlon is caused by the
turbulence of the boundary layer. ”—

A clear declsion gbout the turbulent flow I1n the boundary layer was
obtained by the clasgsical experiments of Eiffel and Prandtl concerning
the drag of spheres in 191k (reference 62). These tests gave the following
results regarding the drag of spheres (compare fig. 73). The curve of
drag against veloclty shows a sudden drop at a definite velocity Vinii,

although it rises again with further Increasing velocity. If one plots

the drag coefficlent ¢y = W/F SUOQ (F = frontal area) against the _
Reynolds number Ubd/v, cy Shows a decrease to 2/5 of its original value
et a definite Reynolde number (Recrit)' Prandtl explained this phenomenon

in 191k, He was 8blé to show that thie drag decrease stems from the laminar
boundary layer changing to turbulent ahead of the separation point. The
resulting conslderable rearward shift of the separation polnt causes a
reduction of the vortex region (dead water) behind the sphere (fig. Th).
This hypothesls could be confirmed by experiment: by putting a wire ring
on the sphere (sphere diamster 28 centimeters, wire diameter 1 millimeter)
one could attaln the smaller drag at smaller V,,.;y &nd Regpgt. The wire

ring is put on slightly ahead of the laminar separation polnt; it causes a
vortex formation in the boundary layer, which is thus made turbulent shead
of the separation point and separates only farther towerd the rear. By
means of the wire ring the boundary layer is, so—to—say, "infected" with
turbulence. Due to the mixing motlons which continually lead high velocity
air masses from the outslide to the wall, the turbulent boundary layer is
able to overcoms, wlithout separation, a lerger pressure increase than the
laminar boundary layer.

The turbulence of the friction layer ls of great lmportance for all
flows along solid walls with pressure increase (diffuser, wing suction
slde). It is, however, also present in the flow along a flat plate where
the pressure gradlemt is zero. There the flow in the boundary layer is
laminar toward the front, experiencing transition to the turbulent state _
further downstream. Whereas the laminar boundary layer thickness increases

downstreem with x1/2) {he turbulent boundary layer thickness increases
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approximately as xh/s; that is, for the turbulent bounaary layer the ~
Increase of the boundary layer thickness ig conglderably larger, (fig. 75).
The position of the transition point X.p1¢ 18 given by (fig. 75):

U x . : »-
(VL) =3 to 5 x 107 _ (13.2) .
crit . -
In comparing the critical Reynolds numbers for the pipe and the plate
one must select r and B, respectively, as reference lengthe. The
equation for the flat plate 1s, according to Blasius (reference 8)
(compare equation (9.21a))
VX
5 = 5\ —
Uy
or —_ (13.3)
U0 Uox ’
—_— = 5 —
v v
. J
Upx
Thus, with -~ = 25000:
crit -
-
U0
—g—- = 5.500 = 2500 (flat plate) (13.4)
crit
Uﬁax r v
This criticel Reynolds number must be compared with v at the : '
tranglition point for the pipe. Due to the parabolic laminar velocity
digtribution in the pipe wy, =2 W, and because r = % d, then, for
the pipe, w _r/v = Wd/v. According to equation (13.1), (B‘%)crit = 2300
for the plpe. Thus the comparable critical Reynolds numbers for Pipe and
plate show rather good agreement. -
CHAPTER XIV. OLDER THEORIES
The first efforts toward theoretical calculation of the turbulent
flows go back to Reynolds. One dlstinguishes in the theory of turbulence )
two main problems: . -
1. The flow laws of the developed turbulent flow:
The space and time velocity variations affect the time average of ?\_

the veloclty; they att like an additional internal friction. The problem
is to calculate the local distribution of the time average of the velocity

components, and thus to gain further information concerning, for instance,
the friction drag. -
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2. Origin of turbulence: -
One investigates under what conditions a small disturbance,

superposed on & laminar flow, increases with time. According to whether

or not the disturbance inr~reases with time, the laminar flow is called

unstable or stable. The Investigation in question is therefore a stability

investigation, made to clarify theoretically the lamlnar—turbulent trangi-—

tion. These Investigations alm particularly at the theoretical calculation

of the criticel Reynolds number. They are, in general, mathematically

rather complicated.

The flrst problem, since 1t i1s the more Important cne for general
flow problems will be our main concern. The second willl be discussed
briefly at the end of the lecture series.

As to the first problem, that of calculation of the developed
turbulent flow, one may remark quite generally that a comprehensive
theoretical treatment, as exists for laminar flow, is not yet possible.
The present theory of the developed turbulent flow must be denoted as
gemi—empirical. It obtalns its foundations to a great extent from
experiment, works largely wlth the laws of mechanical similarity, and
always contalns several or at least one empirical constant. Nevertheless
the theory has contributed much toward correlating the voluminous experi-—
mental data and alsc has yilelded more then one new concept.

For the numerical treatment one divides the turbulent flow, unsteady
in space and time, Into mean values and fluctuation quantities. The mean
value may & priori be formed with respect to either space or tlme. We
prefer, however, the tlme average at a fixed polint in space, and form
such mean values of the velocity, pressure, shearing stress, etc. In
forming the mean values one must not neglect to take them over & suffi—-
clently long tijie interval T so that the msan value willl be independent
of T. Let the veloclty vector with lts three mutually perpendicular
components be

*w = 1y + Jv + kv o _ (14.1)

For a turbulent flow the veloclty components are therefore functions of
the three space coordlnates and the time:

u=1u (JC, s 2, t)
v=v (x, ¥, 2, tj (1k.2)
W =W (x; s Z, t)

The time average for the component u, for Instance, is formed as follows:

£ 4T o
. |
W(x, v, z) =% u 4t | (14.3)
to

*Througnout the text, underscored lestters are used 1in place of
corresponding German script letters used in the original text.
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If u, ¥V, ¥ are independent of +t, and T, the motion is called steady
on the average, or quaslsteady. A steady turbulent flow, in the sense
that the veloclty at a point fixed in space 1s perfectly constant, does
not exist. The velocity fluctuations are then defined by the equatlions

u=1u+ ut

v=v+ vt (Lh.b)

E3
]
=]
4
3

and in the same way for the pressure:
p=p+p (14.5)

The time average of the Tluctuatlon quentities equals zero, accprding to
definition, as the following consideration will show Immediately:

totT to+T to+T
1 1 _i _'E - T =
7 u'dt = 5 u dt — 7 dt=u—-u=0 (14.6)
to to to
Thus:
ut = v = w! =0 (1k.7)

The Additional "Apparent®™ Turbulent Stresses

As a result of the velocity fluctuations additional stresses
( = apparent frictlion) originate in the turbulent flow, This is readily
illustrated for Instance by the case of the simple shearing flov © = T(y)
(fig. 76). Here ¥ = 0; however, a fluctuation velocity v!' in the
transverse dlrection 1s-present. The latter causss a momentum transfer
between the adjoining layers across the maln flow., Thls momentum transfer
acts like an additionel shearing stress T. Whereas in laminsr flow the
friction is brought about by the molecular momentum exchange, the turbulent
exchange of momentum is a macroscopic motion of, mostly, much stronger effect.

The equations of motion of ths turbulent flow, with this turbulent
apparent friction teken Into consideration, can be obtalnsd from the
Navler—Stokes differential equations by substituting equation (14.4) into
the latter and then forming ths tims averages in ths Navlier-Stokes
jifferential equations. To that purpose the Navler—Stokes dlfferentlal
equations (3.16) are written in the form:
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rau a(u) d(uv) a(uw)} __%®,, -32u+32u+52u> \
l oy oz ox A2 aye 352
p[_+a(uv)+av2+a(w)} _a_p+LL 62v+82v+82v>
ot ox oy oz oy 32 ayz azz
ﬁ (14.8)
p[gl+a(§)+a(§v)+a§2}= S_g” 2y 82w+82w>
t ¥ Z z ax aye aze
du , dv. W _
& 3 oz

By introducing equations (1h.4) and (14.5) and forming the time averages
one first obtalins from the contlnulty equation:

du . Ov . W
U, oo .
ox " oy ’ dz ' (14.9)
and thus also:
dut | ovt . & _, , (14.10)
ox oy oz S

By introduction of equations (1k.4) into the left side of equation (14.8)
one obtains expresslions as, for instance,

u2 = (W + u')e —T s 2T ut + urtt ete.

In the subsequent formation of the time average the squared terms in
ths barred quantities remain unchanged since they are already constant
with respect to tims. The mixed terms, as for instance W wut, . . .
and also the terms that are linear 1n the fluctuation quantities are
eliminated in forming the average because of equation (14.7). However,

the terms that are quadratlic In the fluctuatlon quantitles as u'e,
utv?, . . . remain. Thus one obtains from the equation system
(equation (14.8)), after forminhg the time average the following system
of equations: )
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30, <3, =du \_ _ 9B - 12 dutvt aut;;

D(uax + vay + azl> - + pAu —p o~ + 3 Sz
- - _ e D

p<u§_;. + vﬁ + _-a—:)= - -g? + LAV —p aué;' + a;;r + aug:' ? (llﬁ-cll)
5 | <% —E)_ % _ |sww | sww

p<ua + vay + %/ Sy + pAW —p ¢ e By oy

/

The left slde now formally agrees wlth the Navier—Stokes differential
equations for steady flow if one writes lnstead of u, v, w the time
averages of these quantlties. On the right eslde addltional terms which
arise from the fluctuations have been added to the pressure and friction
terms.

Remembering that In deriving the Navler—Stokes differentlal esquations
one could wrlte the resultant surface force per unit volume by means of
the components of a stress tensor according to equation (3.7) in the form

R o1 <agx N aTxy N asz)
ax oy oz
oT. do or.
Xy J J2
+ + + .
J( - w az> ? (14.12)
oT. oT. )
+ k<' Xz + yz + Gz)
=\ o oy dz )

one recognizes by comparison with (equation (14.11)) that one may introduce
for the quantitles added by the fluctuatlion motlon a symmetrical stress
tensor in the following manner:

2 Sy un
- T = tot = utw?
o = pu T. putv TEXZZ P
T =~ pu'v? oy =~ v T&Z = — pvtw! (14.13)
— u"w" = V"'w" e _wtg
Tz =P Ez .~ P Oy P

One has therefore, for
followling equations of

the mean values of the quasisteady flow, the

motion:
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Y- TR T T - _ Ooy a-rxy asz
D<?ax + vay + 2:)— S + pAUd + S + S + e
= = = = ot do >t
péii + 7’% + 'i) = - ?—35- + PATY + af + ay + ayz > (1h.1k)
Z Y 4
T, 7 79 Yo _ 3P 7 asz aTyz Bcz
p<8x+v8y+waz) ~az+qu+ x oy T e j

The contlnulty equation (equation (14.9)) aleo enters. The boundary
conditions are the same as for laminar flow: adhering of the fluld to the
wall, that 1s, on the solid walls all velocity components equal zero.
According to equation (14.1Lk) the mean values of the turbulent flow obey
the same equations of motion as the veloclty components of a laminar flow,
with the friction forces, however, increased by the apparent stresses of
the turbulent fluctuation motion. But since the fluctuation velocities
ut, v', . . . and particularly their space distribution are unknown,
equations (1k.14) and (14.13) are, at first, rather useless for tHe
calculation of a turbulent flow.

Only when one will have succeeded in expressing the fluctuation_

quantities u'z, utv!, . . . in a suitable msnner by the time averages
U, Vs « « o, will 1t be possible to use equations (14.1h) to calculate,

in particular, the mean values u, v, W.

A first expression of this kind which brought however little success
was originated by Boussinesq (reference 64). He introduced, aside from
ths ordinary viscosity coefficlent, a new viscosity coefficient of the
apparent turbulent friction. In analogy to the stress tensor for
laminar flow which is, according to equation (3.13): "

du du du Ju ov v
c Ty xrl  [P°° |3y s [ox ax o
Txy Oy Tyz|l= — ov ov ov du v Qv
Xy y 'yz 0p0+uaxayaz+uayayay (14.15)
Tyy @yz oy 000D %E gg %% %& %%-%%
Boussinesq puts for the apparent turbulent friction: ‘
- Su - Ju, oF
o =20 ¢ e Txy P € <8y + az) . o . (14.16)

Then ﬁhere corresponds to the laminar viscoslty coefficient pu the mixing
factor peg:
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HLew pe O Vg

The kinematic viscosity of the turbulent flow (apparent Pfriction) is
usually very much larger than that for the ordinary laminsr friction.
(Hundred~ or thounsandfold or more). In general, one may therefore
altogether neglect the ordinary viscoslty terms pAu, . . . 1in
equation (14k.1h4). Only at the solid walls where due to the no—slip
condition - —

U=V=WW=0 aswell ag ut =v! =wt =0

the apparent turbulent frictlon dilsappears, does the lamlnar friction
agaln become dominent. Thus there existe in every turbulent friction
layer in the lmmediate neighborhood of the wall & very narrow zone where
the flov is laminar. The thickness of this laminar sublayer 1s only a
small fraction of the turbulent boundary layer thickness.

One can easglly understand from the example of the simple shear flow
according to flgure 76 that in a turbulent flow the mean value u'vt is
different from zero. For this case, a correlation exists between the
fluctuation velocities u' and v' In the following manner: The
particles with negative v' have "mostly™ a positive wu', since they
come from a region of larger mean velocity u.* The parts with positive
v!, on the other hand, have "mostly" a negative u', because they come
from a region with smaller W, and retain in the transverse motlon
approximately the x-~momentum of the layer from which they come. Thus,
"mostly" ulv'! < O and, therefore, the time average ufv' < 0. Therefore,
the shearing stress is this flow 1s:

T P l|>
Xy p utv 0

In measuring turbulent flows one usually measures only the mean
values W; V, . .:. 8ince only they are of practical interest. However,
in order to obtalmn deeper insight into the mechanism of the turbulent
flow, ths fluctuation quantitles have recently been measured and also
their mean squares and products: _

V ula v‘2 \’u'vl

According to measurements by Reichardt (reference 65) in a rectangular
tumel (width 1 millimster, height 24 centimeters) the maximum value

*"Mogtly" is to indicate that particles with different signs,.
though not excluded, are In the minority.
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2 - ’ n \/"_?i
of u* , for instance, equals O.l3‘ﬁﬁax, the maximum value of V v!
equals 0,05 iﬁax' Both maxima lie in the neighborhood of the wall.

One may say, therefore, that in this case the turbulence is strongest
near the wall.

In a flow that is homogeneous (wind tunnel), turbulent fluctuations
are also always present to a varying degree. They determline the so—called
degree of turbulence of a wind tunnel. Since the measurement of the
fluctuation quentities is rather difficult (hot—wire method), a more
convenient measuring method has been chosen, for the present, for determin-—
ation of the degree of turbulence of a wind tunnel: namely, the determin—
ation of the critical Reynolds number for the sphere from force measure—
ments or pressure dlstribution meassurements. One defines as critical
Reynolds nunber the one where the drag coefficient ¢, = 0.3. It

becomes clear that a unique connection existe between the critical Reynolds
nunber and the turbulent fluctuation velocity in the sense that the
critical Reynolds number of the sphere is the lower, the higher the
turbulent fluctuation velocity. According to Amerlcan measurements
(reference 97) the connection between the longitudinal fluctuation and

the measured critical Reymolds number for the sphere 1s as shown in the
following table:

Vﬁ*a/ﬁ 0.00% | 0.0075 | 0.012 | 0.017 | 0.026
Re 1079 | 2.8 2.4 2,0 1.6 1.2
crit.

In addlition to the apparent lncrease of viscoslty, the turbulent
fluctuation motlion has other effects: It tends to even out any tempera—
ture differences or variations 1n concentration existing in a flow.

The diffusion of heat, for instance, 1s much larger than for laminar flow,
because of the exchange motions which are much stronger in turbulent

flow. A close connmnectlon therefore exists, for instance, between the
laws of flow and of heat transfer from & heated body to the fluid flowing

by.

Ninth Lecture (Februery 2, 1942)

CHAPTER XV. MORE RECENT THEORiES; MIXTNG LENGTE

In order to meke possible a gquantltatlive calculation of turbulent
flows, 1t 18 necessary to transform the expressions for the apparent
turbulent stresses (equation (1%4.13)) in such a menner thet they no longer
contain the unknown fluctuation velocities but contain the components of
the mean veloclities. Consider, for that purpose, & particularly simple
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flow, namely a plane flow which has the same direction everywhere and a
velocity varylng only on the different stream lines. The main-flow
direction colncides with the x~direction; then:

T = W(y) ¥T=0 =0 (15.1)

Of the shearing stresses, only the component -Tx ¥ =T 1g present, for
3

which from equation (14.13) as well as from Boussinesq's equetion,
equation (lh.l5),there results:

N = au 15.2
T pu'v p € = (15.2)

This formula shows that |T|/p equals the square of a.velocity. Onse
puts, therefore, for uee in later calculations,

vy = \HL - \“u—v (15.3)

and denotes vy as shearling stress veloclity. Thus this shearing stress
veloclty is a measure of the momentum transfer by the burbulent
fluctuation motion.

According to Prandtl (reference 66), ocne may picture the turbulent
flow mechanlsm, particularly turbulent mixing, in the following simplifiled
menner: Fluld partlcles, each possessing a particular motion, origlnate
in the turbulent flow; they move for a certain distance as coherent messes
maintaining thelr velocity (momentum). One now assumes that such a fluld
particle which originates in the layer (y, — 1) and has the velocity
U(y; — 1) moves a distance 1 = mixing lehigth normal to the flow (fig. 7).
If this fluld particle maintains its original velocity in the x—direction
it will have, in its new location jy;, &a smaller veloclity than its new
surroundings, the velocity difference being

—ui = 'ﬁ(yl) —Ti(yl — 1) with +v'> 0

Likewise & fluld particle coming from the layer (yl + 1) to y; has
at the new location a greater velocity than the surroundings there; the
difference is
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ué = ﬁ(yl + 1) — ﬁ(yl) with +v'< O

ui and. ué give the turbulent veloclty fluctuation in the layer yy-

One obtains for the mean value of thls velocity fluctuation

W =3 (ug 1 tug)) = 1 {(38) (15.1)

From this equatlion one obtains the following physical interpretation for
the mixing length 1:

The mixing length signifiés the distance in the transverse directlon
which a fluid particle must travel at the mean velocity of its original
layer so that the difference between its veloclty and the velocity of ths
new locatlion equals the mean veloclty fluctuation of the turbulent flow.
It 1s left open whether the fluld particles in their transverse motion
fully maintaln the veloclty of their original lasyer, or whether they have
partly assumed the velocity of the traverse layer and then travelled
larger distances In the transverse direction. The Prandtl mixing length
which is thereby introduced has a certain analogy to the mean free path
of the klnetic theory of gases, with, however, the difference that there
one deals with microscoplc motions of the molecules, here with macroscopic
motlons of larger fluild particles.

One may picture the origin of the transverse fluctuation veloclty !
in the followlng way:

Two fluild particles flowing from the leyers (y; + 1) and (y; — 1)

meet in the layer y; 1n such a manner that one lies hehind the other:
the faster (y; + 1) behind the slower (yp — ). They then colllde

wlth the veloclty 2u! and glveway laterally. Thereby originates the
trensverse velocity v', directed away from the layer ¥ to both sides.

If, conversely, the slower of the two pariticles is behind the faster,
they withdraw from each other with the velocity 2u'. In this case thse
space formed between them is filled up oubt of the surroundings. Thus
origlnates a transverse velocity v! dlrected toward the layer ¥y

One concludes from thls consideration that v' and u' are of the same
order of magnitude and puts

[vt] = number [u’l = number 1 % (15-5)

In order to express the shearing stress according to equation (15.2) one
has to consider the mean value ufv! more closely. The following
conclusions can be drawn from the.previous conslderations.
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The particles erriving in the layer ¥y with positive v* (from
below, fig. T7) have "mostly"™ a negative u' so that u'v' 18 negative.
For the particles arriving with negative +v'!', u' ig "mostly"™ positive,
go that u'v! is again negative. "Mostly"™ signifiles that particles with
different sign are not wholly excluded, but are strongly outnumbered.

The mean value u'v! 1is therefore different from zero and negative. Thus
one puts ' )

— —— ——

utvt = — k Jut| |vt| (15.6)

with k # 0; 0 <k <1. The numerical factor k, also called the
correlation coefficient 1s not known more closely. According to
equation (15.5) and (15.4) cne now obtains

utv! = — nunber 7,2<%%)2 (15.7)

the "number" in this equation being different from the one in
equation (15.5). If ome includes the "number™ in the unknown mixing
length, one can also write

T = — z2<g)2 | (15.8)

and thus finally obtains for the turbulent shearing stress eccording to
equation (15.2) '

Considering that the sign of T also must change with the sign of %g

it is more correct to write

T=p 1 du l du Prandtlts (15.9)

dy dy formulea

This is the famous Prendtl mixing léength formule which has been very
successful for the calculatlon of turbulent flows.

If one compares this formula (equation (15.9)) with the equations
of Boussinesq where one had put T = ¢ %% (¢ = mixing factor = turbulent

analogue of the lamlnar viscosity ), one has for the mlxing factor
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‘-@l (15.10)

2
€ = pl
dy

The turbulent mixing factor € 1s in most cases larger than the laminar
viscosity p by several powers of ten. Moreover the mixing factor €
i1s dependent on the veloclity and on the locatlon and tends toward zero
near a wall, because there the mixing length goes toward zero.

If one compares Prandtl's formula equation (15.9) with Boussinesg's
equation (15.2) acne could perhaps think at first thet not much hes been
gained, since the unknown quantity ¢ ( = apparent viscosity) has been
replaced by the new unknown 1 = mixing length. Nevertheless Prandtl's
formule is considerably better than the 0ld formula for the following
reason: It is known from tests that the drag for turbulent flow is
proportional to the square of the velocity. According to equation (15.9)
one obtains this square law for drag by assuming the mixing length to be
independent of the velocity, that 1s, by assuming the mixing length to
be purely a function of position. I% is considerably easler to make a
plausible agsumption for the length 1 = mixing length than for ths
apparent turbulent viscosity e, and therein lies the considerable
superiority of Prandtl's formula equation (15.9) over Boussinesg's
squation (15.2).

In many cases the length 1 can be brought into a simple relation
to the characteristic lengths of the respective flows. For the flow along
a smooth wall 1 must, at the wall itself, equal zero, since all trans—
verse motions are prevented at the wall. For the flow along a rough well,
however, the limiting velue of 1 at the wall equals a length of the
order of magnitude of the height of the roughness.

It would be very useful to have a formula permlitting the determina-—
tion of the dependence of the mixing length on the position for any
arbitrary flow. Such an attempt has been made by v. Karman (reference 68).
v. Karmsn mekes the assumption that the inner mechanism of the turbulent
Plow 1s such that the motion at various poilnts differs only with respect
to time— and length-scale, but is otherwise similar (similarity hypothesis).
Tnstead of the wnits of time and length one may select those of velocity
and length. The veloclty unit that 1s lmportent for the turbulent motion
18 the shearing stress velocity vy according to equation (15.3). The
corresponding unit of length is the mixing length 1.

In order to f£ind the quantity 1 from the data of the baslic flow
%(y), v. Kerman applies the Taylor developmeat* for wu(y) in the neigh—
borhood of the point y,.

a(r) = o)+ 5= 5) (8) + H (5 -5)? (Z—:g-) R LR ED
1

¥ Tn the following, the bar over the mean veloclity will be omitted,
for simplification.
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The length 1 cannot depend on the velocity u(yl), since according

to Newton's principle of relativity the addition of a constant velocity
has no influence on the course of motion. Thus

@ (9

and the higher derlvatives remain as characteristic data of the basic
flow. The simplest length to be formed from it is

du | &%
T

v. Karman puts thereﬁore

2
- du [ dTu
1wk 5 (15.12)

According to this formula 1 i1s not dependent on the amount of velocity
but only on the veloclty distributlon. Thus 17 1s a pure position
function as required above. In equatlion (15.12) kg i1s an empirical

constant which must be determined from the experiment. To arrive further
at the turbulent shearing stress, v. Karman also maintains Prandtl's
equation (15.9).

In generalizing eguation (15.9) one obtains, accor@ing to Prandtl,
the complete expression for the turbulent stress tensor of a plane flow
in the form T

Su Su ., ov

oy T 2 S >y + .
= p12 I%?l (15.13)

91_1 + .a_v 2 _a_V_

’xy %% Y | X dy

The common factor on the right silde signifles the turbulent mixing
factor according to equation (15.10).
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Tenth Le¢ture (February 9, 1942)
Flow Along & Smooth Wall

We will immedlately make a first application of Prandtlts formula
(equation (15.9)) for the flow along & smooth wall. The normal distance
from the wall is denoted as y. Let the wall colnclde with the x—axils.
For the velocity distribution then, wu = u(y). For this case one sets
the mixing length in the nelghborhood of the wall proportional to the
distaence from the wall

1 = Ky (15.1,4-)

the constant x must be determined from the experiment. Moreover one
mekes the assumption that the shearing stress T 18 constant in the ,
entire flow region; then the shearing stress veloclty vx according to
equation (15.3) also 1s constant. If one further neglects the laminar
friction, one obtains from equations (15.2}),.(15.9), (15.1k4)

T2 = n2y2<2E>2

dy
or
du _ ¥x
dy k¥
and by integration
T
u=— Iny + constant - (15.15)

K

In determining the constant of integration one must pay attention to the
fact that the turbulent law equation (15.9) does not apply right up to
the wall but that very near to the wall an extremely thin laminar layer
is present. From the laminer viscoslity p and the turbulent shearing
stress velocity v, one can form the length V/vy. The constant of
integration in equation (15.15) is determined from the condition that
u=0 for y=y,. Thus there results, according to equation (15.15)

v
u = 1; (lny -y, (15.16)

The as yet unknown distance from the wall y, 1s set proportional to
the length V/vx, thus
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Vo = B %5 (15.17)

where B slgnifies a dimensionless constant. Thus one finally obtains
for the velocity distribution at the smooth wall

TV%

- Tx
bl (0 v

— In B) (15.18)

that 1s, & logarithmic velocity distributlion law. It containe two
empirical constants k and B. According to measurements k = 0.k.

From equation (15.18) one can see that the dimensionless velocity u/vx = @
can be represented as. a function of the dimensionless distance from the
wall n = vxy/v. The latter 1s a sort of Reynolds number, formed with the
distance from the wall y and the shearing stress veloclty wvx. Thus one
obtalns for larger Reynolds numbers from equation (15.18) the following
universal velocity distribution law

o(n) =AInnq+B (15.19)

with A =1/g = 2.5. For smaller Reynolds numbers, where the laminer
friction also has a certain influence, tests gave the veloclty distribution
law

o(n) =C " (15.20)
or
yUx\ 1
%i = C ('TT> (15.202)

with the exponent n equalling sbout 1/7. These universal velocity dis—
tribution laws according to measurements for pipe flow are glven in
figure 78. They will be discussed in more detall in the following chapter.

CHAPTER XVI. PIPE FLOW

a., The Smooth Pipe

Among the various turbulent flows of practical importance, pipe
flow was investigated with particular thoroughness because of 1ts great
practical importance., We shall therefore consider the pipe flow first.
It will be noted at this point that the flow laws of the pipe flow may
be applied to other cesss, as for instance the plane plate Iin longitudinal
flow. Consider a straight pipe of cilrcular cross section and with & smooth
wall. Let y %be the radial coordinate measured from the pipe axis. The
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balence of forces between the shearing stress T and the pressure
drop P, =P, ona plece of pipe of length 1T ylelds as before for the
laminar flow according to equation (2.la), the relation:

Py =Py
T= _L_ § - (16-1)

This formule applies equally to laminar and turbulent flow., Im it T

now signifies the sum of the laminar shearing stresses and of the apparent
turbulent shearing stresses. Over a cross section, T 1s proportional

to y. The shearing stress at the wall T, may be determined
experimentally by measurement of the pressure drop:

P; = Po
T, == 2L 16.2
° L 2 ( ).

For the turbulent Plow the comnection between pressure drop and flow

volums Q = urzﬁ' must be obtalned from tests.* In the literature there
exlsts a very great number of pipe resistance formulas. Only those serve our
purpose which satisfy Reynolds! law of simllarity. One of them is the
formule of H. Blasius (reference 69), set up particularly carefully,

which is valid for a smooth well and for Reynolds numbers

Re = ud/v < 100 000.

If one introduces, as before in equation (2.6), the dimensionless
pipe resistance coefficlent. A by the equation

P Po A -2 i

[¢]
——— D - 16_
L d 2 v ( 3)

A 1s, according to Blasius:

» = 0.3164 (Ev—dyl/h (16.4)
Comparing equations (16.2) and (16.3) one finds:
=g e - (16.5)
and therefore according to equation (16.4):
T, = 0.03955 p a7/ e cfl/LF (16.6)

*Tn the following, U is, for the plpe flow, the mean flow velocity
at the cross section, as distinguished from the time average in the previous
sections.,
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If one Introduces, moreover, instead of the dlameter d the radius r,
the numerlcal factor in this linear equation must be divided by

21 = 1.19. Thus To becomes:

Ty = 0.03325 p TI/¥ y1/4 - L/M - p Vo (16.7)

where the shearing stress veloclty 1s defined by the wall shearing stress:

Ty = \,3};2 (16.8)

If one finally factors the quantity v*2 in equation (16.7) into V*T/h X

v*l/h, one obtains:

— _7/’4- v*r /’-’- 'V'*I' 1/7 -
&) '0—6%3T5<-"_)1 ox & = 6.9 () (16:9)

This equation is very similar to equation (15.20sa); however, the mean
veloclty now takes the place of the local veloclty and the plpe radius
takes the place of the distance from the wall. One passes first from
the mean velocity to the maximum velocilty u3 3 based on measurementg of

Nikuradse (reference 70) u = 0.8 uy, and therewlth follows from
equation (16.9): '

If thls formula 1s assumed to be valid for any distance from the wall,
one obtalns:

0 VT /T
2 - 8.7 (v )1 (16.10)
or

® = 8.7k nl/T (16.11)

This is the so—called 1/7—power law for the veloclty distribution; its
form was already given in equation (15.20e). The coefficients n and 1,

M
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8till unknown there, have now been determined on the basls of the
reslstance law of the pipe flow. Figure T8 shows, according to measure—
ments of Nikuradse (reference 70) that this law is well satlsfied in the
range of Reynolds numbers up to 100,000. Naturally this law of veloclty
distribution can apply only to the reglon of Reynolds numbers where the
pipe resistance law given by equation (16.4) is valid, since it was
derived from this law.

For purposes of later calculations we shall derive from
equation (16.10) the shearing stress velocity vy. One obtains:

7/8<§ ) 1/8

V% = 0.150 u (16.12)

with 8.711-7/8

= 6.65 and 6—165- = 0.150. From equation (16.12) follows:

Ty = P v*2 = o.0225ﬁ>u7/lL (;)1/4 (16.13)

This relation will be needed later.

Comparing measured veloclty distributions with equation (16.10)
one can state that outside of the range of validity of equation (16.10),
namely for Re > 100,000, a better approximation is obtained by the
power 1/8, 1/9, or 1/10 1instead of 1/7. The measurements concerning
the pipe resistance (fig. 81) show an upward deviation from the formula
of Blasius for larger Reynolds numbers.

The logarithmic velocity distribution law, equation (15.19), derived
in the previous chapter has been verified by Nikuradse (reference T0O) on
the basis of his measurements for the smooth plpe. For thils purpose from
the measured pressure drop for each velocity proflile one flrst determines
the wall shearing stress according to equation (16.2) and from that
according to equation (16.8), the shearing stress velocity v, = T./P.
Then the dimensionless veloclty ¢ = u/v* can be plotted asgalnst the
dimensionless distance from the wall 1 = yvx/y. The measurements of
Nikuradse in a very large range of Reynolds numbers, Re = 4 X 103 up to
3240 X 103, lie very accurately on a straight line if one plots ¢ against
log n (fig. 78). The straight line has the equation:

=25 1wmmn+ 5.5 (16.14)

This gives, by comparison with equation (15.18), the following numerical
values for the coefficients Kk and P
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kK = 0.400 B = 0.111 (16.15)

Mixing length

From the measured veloclty distribution and the measured pressure
drop the distribution of the mixing length over the pipe cross section
can be determined according to equations (16.2), (16.1), and (15.9).

T =Tq % (v = distance from the plpe axis). This determination of the

mixing length from the measurements in the plipe wasg made by Nikuradse
(reference T0). For large Reynolds numbers, where the influence of
viscoeity is negligible, one cobtains a distribution of the mixing length
1/r over y/r which is independent of the Re-number (fig. 79). The
following interpolation formula can be glven for this distribution:

L. 0.1k ~0.08 (1 -.%)2 - o.c;_6<1 - %)h (16.16)

H

In thls equation y signifies the distaence from the wall., The develop—
ment of equation (16.16) for small y/r (neighborhood of the wall) gives

y2 -
1 = O.hy —-O.hh-;: + e e (16.162)

In the nelghborhood of the wall the mixing length 1s, therefore, propor—
tional to the distance from the wall. Equation (16.16) for the distri-
bution of the mixing length applies not only to the smooth plipe, but,
according to the meaBsurements of Nikuradse (reference T1l) also to the
rough pipe, as can be ssen from figure 79. From this fact one can derive
in a very simple manner a universal form for the law of velocity distri-
bution, valld for the smooth as well as for the rough plpe. One puts

for the mixing length dlstribution: 1 =ky f(%)with f(%)—)l for L —o.
Furthsrmore follows from the linear distribution of the shearing stress

over the crose section:

T =T (l - %) (y = distance from the wall)

together with equation (15.9)
4

y »
du 1.7 _ Y+ V1-—F%

==\ == —= (16.17)
o l¥e K ye(y/r)

end hence by integration:
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" ~ ¥
v NPTEOE (16.18)

the lower limit of Intergration y, where the veloclty equals zero is,
according to the considerations of the previous section, proportional

to Vfvx; thus: yo/r = Fl(z;e-r—). From equetion (16.18) follows:

1
_Vx V1i—-y/rdy/r
T/ r o \r

and therefore, from equations (16.18) and (16.18a):

Uper — U = ¥y F (7/r) (16.19)

This law, with the same function F(y/r), applies equally to smooth and
rough pipes. It states that the curves of the veloclity distribution over
the plpe cross section for all Reynolds numbers and all roughnesses can
be made congruent by shifting along the velocity axls, 1f one plots

Ungx — u/vy against y/r (fig. 80). The explicit expression for the

function F(y/r) is obtained immediately from equation (16.1%), according
to which

U __ —u=257 In< =575 v, log ? (16.20)

eq

Universal Reslstance Iaw

According to thelr derivation the veloclty—-distribution—law
(equations (16.19) and (16.20)) are to be regarded as valid for erbitrary
- Reynolds number since the laminar viscosity was neglected as compared
with the turbulent viscosity. We shall now derive from the velocity—
distribution—law equation (16.20) a resistance law which, in contrast to
Blasius?!, applies up to Reynolds numbers of arbltrary magnitude.
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From equation (16.20) one may determine by integration over the
cross section the mean flow velocity U. One filnds:

U= Upey = 3.75 Vx (16.21)

The test results of Nikuradse (reference 70) gave a number slightly
different from 3.75, namely:

U=, — 40T v, (16.22)

According to equation (16.5):
2 -
\ =8 fui) (16.23)

From the universal veloclty distribution law of the smooth plpe
equation (16.1%) follows: ’

Uy = Tx {2.5 n -r—;i + 5.5}
and hence the conmnection with equation (16,21):

T=v, {2.5 m X+ 1.75} (16.24)

The Reynolds number enters into the calculation by means of the identity:

Thue results from equations (16.23) and (16.24):

8
_ 2
[2.5 In <%1- \[X) -2.5 m L \2+ 1.75}

1

= e

{2.035 log(%d-' \]K)-— o.91} :
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or:

- bd -
0 2,035 log (13- vi) 0.91 (16.25)

Accordingly a straight line must result for the resistance law of the smooth
pipe, 1f one plots l/ Va againsgt log(%—d \F’) This 1s very well conflrmed

by Nikuradse's measurement (fig. 81).  The numerical values according to the
measurements differ only slightly from those of thils theoretical derivation.
From Nikuradse's measurements was found:

= 2.0 log (%1- VX) - 0.8 (16.26)

L
"

Unlversal Resistance Law Por Smooth Plpes

This 1s the final resistance law for smooth pipes. On the basis of
its derivation it may be extrapolated up to Reynolds numbers of arbitrary
magnitude. Thus measurements for larger Reynolds numbers than those of
Nikuradse's tests are not required. Up to Re = 100,000 +thls universal
reslstance law is 1n good agreement with the Blaslius law according to
equation (16.4). For higher Reynolds numbers the Blasius law deviates
considerably from the measurements (fig. 81).

Concerning the determination of A from equation (16.26), where it
appears on both sldes, 1t should be added that it can be easlly obtained
by successive approximation.

Eleventh Lecture (February 16, 1942)
b. The Rough Pipe

The characteristic parameter for the flow along a rough wall is the
ratio of graln size k of the roughness to the boundary layer thickness,
particularly to the thickness of the leminar sublayer 87' which is

always present within the turbulent friction layer 1n the immedlate
neighborhood of the wall. The thickness of the laminar sublayer is

61 = number FV_;. The ,effectiveness of roughness of a certain grain size
depends, therefore, on the dimensionless roughness coefficlent k/&z.u%'i

In the experimental investigations of the resistance of turbulent Fflows
over rough walls, the rough pipe has been studied very thoroughly since it
ls of great practical importance. Besldes depending on the Reynolds number,
the resistance of & rough pipe is a function of the relative roughness r/k.
One distinguishes for the resistance law of & rough pipe three regions.
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The subsequently given boundaries of these reglons are valld for sand
roughness kg 1lke those investigated by Nikuradse (reference T1).

1. Hydraulically smooth: The graln size of the roughness is so
small that all roughnesses lie within the laminar sublayer. In this
case the roughness has no dreZ increasing effect. This case.exists for
emall Reynolds numbers and for values of the characterlstic roughnesas

Vxk
muber: 0 = Fs< 5.
v

2. Fully developed roughness flow: The graln slze of the roughness
is so large that all roughnesses project from the laminer sub-—layer. The
friction drag then consists predominantly of the form drag of the single
roughness elements. A purely square drag law applies. _ For the pipe the
resigtance coefficient A 1is then independent of Re and only dependent
on the relative roughness k/r. Thls law exists forvzgry large Reynolds

numbers. For sand roughness this law applies for: 8 2 70.

V.

3. Intermediate region: Only a fraction of the roughness elements
project from the laminar sublayer. The drag coefficlent depends on r/k
as well as on " Re. Thls law exisis for medlum Reynolds_ numbers and, for

Tk
the sand roughness, for: 5 < 8 < 70,

The dependence of the pipe resistance coefficient on the Reynolds
nunber end on the relative roughness according to the msasurements of
Nikuradse (reference Tl) can be seen from figure 82 as well as, in
particular, the three laws Just glven.

The velocity distribution on & rough wall 1s given, basically, in
the same way as for the smooth wall by equation (15.16)., - One has only
to substitute for the constant of integration y, enother value: ¥,
proportional to the roughness grain slze. One puts for sand roughness
¥o = 7 kg and hence obtalins from eguation (15.16)

u 1
=== mé—my (16.27)

The constant 7y 1s, moreover, a function of the roughness form and the
roughness distribution. Comparison with experiments of Nikuradse
(reference T1) on pipes roughened artificially by sdnd yields for the
velocity distribution the general formula:

u = v, (2.5 n EY; + B) (16.28)
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the constant B belng different in each domain described sbove; 1t
depends on  vyk_/v.

For the fully developed roughness flow B = 8.5, thus:

u = v*<2.5 n ]-I’—'- + 8.5) (fully rough) (16.29)
8
whence follows:
=v,(2.5 1n &= + 8. ) 16.30
umaxv*<5nks+5 (16.30)
and:
wo = U= Ty 2,500 ; (16.30a)

in agreement with equation (16.20). Thus there applies also to rough
pipes, as equation (16.21) did before to the smooth pipe, the relation:

U= Upey — 3.T5 T (16.31)

From here one cen, by a calcuiation which 1s perfectly analogous to the
previous one for the smooth pipe, easily arrlve at the resistance law of
the rough plpe for fully developed roughness flow. By lnsertion of Woor

according to equation (16.30) into equation (16.31) one obtains:

T = vy <2.5 in kis + 1;.75) (16.32)

or:
2
A =8 (Z_i) - 8 (16.33)
" (2.5 In L 4 4.75)2
kB

or.

A = s (16.34)

(2.0 108 il + l.68>2
8
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This 1s the square resigtance law of the fully developed roughness flow.
Comparison with the test results of Nikuradse (flig. 83) shows that one
obtains better agreement 1f one changes the number 1.68 to 1l.74. Thus
the resistance law of the plpe flow for fully developed roughness 1s:

A = L 5 (16.35)
<2.o tog L + 1.7&)

In the plots of :%E against log r/kg (fig. 83) the test results fall

very accurately on & straight line.

For flow along a rough wall In the Intermedlate region the constant
B 1in equation (16.28) is, moreover, a function of the roughness coeffi—
cient v*ks/v. For this case also oné can derlve the reslstancé law

immediately from the velocity distribution. According to equation (16.28):
Cmax _ 2.5 il—' (16.36)

8 * 8

- 2.5 In L =

B:l
Vi k

On the other hand, according to equations (16.31) and (16.23):

un
mex ., 3,75 - 28 4 3,75 (16.37)

so that one obtains from eguation (16.36):

Tk : :
s 1 l — , l— — ?E— P r M .
B< v') ™ 2.5 In ke Vx 2.5 n k‘; + 3.75 (16.38)

One can, therefore, determine the constant B as a function of v*ks/v

elther from the velocilty distribution or from the resistance law. The
plot in figure 84 shows good agreement between the values determined by
these two methods. At the same time the determination of the resistance
law from the velocity distribution 1s confirmed.

The formulas for B i1ncludes the case of the smooth plpe. B 18,
according to equation (16.1h4),
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Txk
_u Yy _
il 2.5 In EE = 2.5 In

8

+ 5.5 (16.39)
Thus & straight line results for B in the plot against log vyl /v.

Other Roughnesses

Becauge of the great practical importance of the roughness—problem
a Pew data concerning roughnesses other than the special sand roughness
will be given. WNikuradset!s sand roughness may also be characterized by
the fact that the roughness density was at l1ts maximm value, because
the wall was covered with sand as densely as possible. For many practical
roughnessee ths roughness denslty 1s considerably smaeller. In such cases
the drag then depends, for one thing, on form and height of the roughness,
and, moreover, on the roughness demnsity. It is useful to classify any
arbitrary roughness in the scale of & standard roughness. Nikuradse's
sand roughness suggests 1tself as roughness reference (roughness scale)
because it was Investigated for a very large range of Reynolds numbers
and relative roughnesses. Classification with respect to the roughness
scale 1s simplest for the region of fully developed roughness. According
to what was sald previously, for this region the wvelocity distribution
is given by:

w=5T5ed+Bs  Bg=85 ~ (16.k0)

and the resistance coefficient by:

A = L -(16.41)
r )

8

One now relates to an arbitrary roughness k an equlivalent sand roughness
kg Dby the ratio

k,=ak . (16.42)
Where by equivaelent sand roughness kg 1s meant that graln size of sand
roughness which has, according to equation (16.41) the same reslstance

as the given roughness k.

Basically, of course, the squivalent sand roughness k., can be
determined by & resistence measurement on the pilpe. However, such measurements
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for arbltrary roughnesses are difficult to perform. Measurements on
arbltrary roughnesses in a tunnel with planse walls are more convenient,

To this purpose an exchangeable wall of a tunnel wilth rectangular croas
section is provided with the roughness to be investlgated (fig. 85).

From the measurement of the veloclty dilstribution in such a tunnel with

a rough and a smooth longitudlnal wall one cbtealns, for the logarithmic
plot against the distance from the wall, a triasnguler velocity distribu—
tion (compare fig. 85). From the logarithmic plot of the velocity distri-—
bution over the rough wall - -

u=nmn,logy+m, . (16.43)

one obtalns by comparison with the universal law according to
equation (16.28) for the shearing stress velocity at the wall:

(16.14k)

Further, one determines for the roughness to be investigated the constant
B of the velocity distributlon law, namely:

B =2 _ 5.75 log (16.45)

Vyr

W4

By comparison of equation (16.45) with (16.40) one cbtalns for the
equivalent sand roughnesss

f5_85-3 " ' (16.46)

2.75 108 == ~

In this way one may determine the dreg for arbitrary roughmesses from a
gimple meagurement in the roughness tunnel. This method may be also
carrled over to the case of the intermediaste region.

CHAPTER XVII. THE FRICTION DRAG OF THE FLAT PLATE
IN LONGITUDINAL FLOW
The turbulent friction drag of the plate in longltudinal flow is
of very great practical importance, for instance as frictlon drag of wings,

airplane fuselages, or ships. The exact measurement of the friction drag
for the large Reynolda numbers of practice 1s extremely difficult. Thus
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it is particularly importent that one can, according to Prandtl
(references T3 and Tk4), calculate the friction drag of surfaces from the
results of pipe flow studies., This converslion from the pipe to the plate
can be made for the smooth as well as for the rough plate.

8., The Smooth Plate .

One assumes, for simplification, that the boundary layer on the
plate 1s turbulent from the leading edge. Let the coordinate system be
selected according to figure 86. The boundary layer thickness B&(x)
increases with the length of run x. Let b be the width of the plate.
For the transition from pipe to plate the free stream velocity U, of

the plate corresponds to the maximum veloclty u in the plpe, and
the boundary layer thickness 8 +to the plpe radius r.

One now mekes the fundamental assumption that the same veloclity
distribution exists in the boundary layer on the plate &s in the pipe.
This is certalnly not exactly correct since the velocity distribution in
the pipe is influenced by a pressure drop, whereas on the plate the
pressure gradient equals zero. However, slight differences in veloclty
distribution are insignificant since it 1s the momentum integral which
is of fundamental importance for the drag. For the drag W(x) of ome
side of the plate of length x, according to equations (10.1) and (10.2):

x 5(x)
W(x) =B To(x) dx =Dp u (O, — u) dy (17.1)
o o
whence
&= T(x) (17.18)

The equation (17.1l) can also be written in the form

1
2
W(x) = boU 8(x) & (1 - -‘1-> al (17.2)
° U, o) 8
(o]

For the velocity distribution in the boundary layer one now assumes
the 1/7—power law found for the pipe. Replacing wu,.. by Us and r

by ©; one may write this law, according to equation (16.11):
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T = (1)1/7 -t (17.3)

1 1
s U_Z <1 _ %)d : R n'l/T 1 T],:L/7) ant = % (17.4)
o [o]
end thus ) )
W(x) = = veu, 5(x) (17.5)
Hence follows, according to equation (17.la)
To = ob 6T, (17.6)

On the other hand, one had found before for the smooth pipe, equation (16.13)
ggalin replacing r by 8 and L by Ué:

T, = 0.0225 r:UoTﬂL (“é)l/h (17.7)

By equating equations (17.6) and (17.7) results:

T/ /4
7 245 _ v)l
-,Té- on -—3 = 0.0225 on (-6-

This is a differential equation for &(x). The integration ylelds:

‘T
=8 == 0.0225( g x

5 T,

> (17.8)
8(x) = 0.37 (1-%)1/5 :&h/5
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5(x) = 95'-33 Rey = —~ (17.9)

Ve

For the turbulent boundary layer the boundery layer thickness, therefore,
increages with xl"/ 5., fThe corresponding sequation for the laminar flow
was, according to equation (9.2la), & = 5\}vx/Uo.

By substitution of equation (17.8) into equation (17.5) one obtains

o -1/5
W(x) = 0.036 bpU,"x (Rey)

or for the drag coefficlent ¢ P = W/% anxb:

1/5

cp = 0.072 (Re_)

Comparing this result with test results on plates one finds the numsrical
value 0.072 to be somswhat too low. h

1/5 valld for

= 0.074% (Rey) 5 x 105 < e <107 (17.10)

Cp

corresponds better to the meesurements. This law holds true only

T
for Rex< 10 , corresponding to the fact that the Blasius plpe resistance

law and the l/"{—power law of the wveloclty distribution, which form the
basgls of this plate drag law, are not valid for largs Reynolds numbers.
This law is represented in figure 87 together with the laminar—Fflow law
according to equation (9.19). The initilal laminer flow on the front part
of the plate can be taken into consideration by a subtraction, according
to Prandtl (reference T3):

EVEN sx100 <,
Cp = 0.0Th Rey - .];RI? - 107 < Rey (17.11)
X

The plate drag law for very large Reynolds numbers can be obtained
in essentially the same way by starting from the universal logarithmic
law for the velocity distribution equation (16.41) which, according to
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its derivation, is valld up to Reynolds numbers of a.r'bij:rary megnitude.
Here the calculation becomes considersbly more complicated. The
development of the calculatlion 1s clarified i1f one first Introduces the

veloclty distributlion in a general form. We had introduced for the pipe

flow the dimensionless variables ¢ = ;B- and q = Z}"i The values at
*

the edge of the boundary layer are to be denoted by the index O, +thus

U ov
o *
P = o o = v (17.12)
Then:
@
u = =T 17.13)
=T 5 (
ve vo
y = =2 n dy = —2 dn (17.24)
UO UO

From the equation T, = %% follows, with W according to equation (17.1)

S
d
PVt =p gz S| WU, -u)éy
o’
dn
v2 =92 4, u(Uy — u) dy
dx dn,
o
and according to equation (17.13):
2 nh
U vo
o o a . o
= U, — u}dij ——
21T, d-'rlo u( o )d ax

3
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T
= Vo 8o 4 2 (1._.EL> an
dx dn, Po Po
o
o
2
1) dn
0 =v_—0.d -2 Y)an (27.15)
CPOE dx d.-qo ( q)o>
o

2
In forming the integral ai— Jpo ® - g;—) dn one must note the following
(5 (o]

facts: The differentiation with respect to the upper limit gives zero,
since for n = n5 @ = 9, In the differentiation of the integrand ¢

is to be regarded as constant, end P, &8s & function of Mo* Therefore

Mo To

2 2
4 <9 _.EL;)an = EEE 2 4q
dno Po dno @ 2

0 o ©

Thus follows from equation (17.15):

o
U, = v%&% o2an (17.16)
9
One puts, for simplification,
ap Mo »
F(n,) = Ei ¢ dn (17.17)

o}

and obtains from equation (17.16):
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v
dx = U—; F(T]o) d.'qo

If one assumes this law to be valid from the leading edge of the plate
(x = 0), that is, that the flow is turbulent starting from the front,

the integration gives:

X = g— o (ny) (17.18)
o

with .
kil

& (ny) = F(n,)dn, (17.19)

No=0

Bquation (17.18) can also be written so that the Re~number formed with
the length of run x appears:

UOI .
Roy = - = 4 () (17.20)
with:
M1 Ny
- d'q)o 2
o = —2 p-an | dn, (17.19e)
(Tll) dTlo

N~

Equation (17.20) gives the relation between the dimensionless boundary
layer thickness 1, = V40 and the Re-mumber Uxf .

The drag remainsg to be calculated. From

x
Pollows, because W =D f To dx
o]
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n1 )
Fin
W=bpUvy —3- dng = b p U vy (ny) (17.21)
Po
N5=0
where
7
1
F(no)
* = ° .
(’11) . 5 d:qo (17.22)
o= °

The drag coefficlent o, ='ﬁ/%'U02b x becomss finally
ov ¥(ny)

cf=U-—x‘¥'( )=2
ot (my ¢(ny)

(17.23)

Hence c¢ algo turns out to be a function of Ny Equations (17.20)

and (17.23) together give a parametric representation of cp a8 s function
' V.5
of Rey, where the parameter is the boundary layer thickness 7, = —3—.

Numerical Results

In order to arrive at numerical results, one must Introduce a
special function for o(n). {7r the 1/7-power law according to equation
(16.11) that is, with ¢ = Cq 7, ome would obtain the drag law according
to equation (17.10). One uses the universal logarithmic velocity distri-—
bution law, equation (16.14).

®=2.5 117 + 5.5

In order to meke the carrying out of the lntegrations more convenient,
ons writes '

® =251 (1 + 9n)

Then ¢ becomss, for n =0, @ = 0. The adding of the one changes
o(q) a little, only for very small n ahd has only little influence
on the integrals. If one writes the law at first 1n the general form
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P ==2an (1+by) (17.24)

the calculation of the Integrals eguations (17.17), (17.19), (17.22),
with z =1 + by ylelds : -
[ N

F(n) = a3 (Zn22—22nz+2—-§)

3 _
éb(-q).:%-(z anz—ll-zlnz-22nz+6z—6> > (17.25)

Mn)=%{z+1_eg_-_l_)

n =z

With the numerlcal values
a = 2.493 b = 8.93

one obtains for the drag law the followlng table:

A Re 10°C o, 105
103
0.500 0.337 5.65
1.00 0.820 k.75
2.00 1.96 .05
3.00 3.25 3.71
5.00 6.10 3.3k
12.0 17.7 2.81
20.0 32.5 2.57
50.0 96.5 2.20
100.0 217.5 1.96
500.0 1401.0 1.55

This table can be replaced by the following interpolation formmla:

0.472

cp =
{1o0g Rex)9'58
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Comparison with test results shows that the agreement improves if the
number 0.472 is slightly varied, by putting

c. = 0.455 18 < Re, < 10°

P 2.58
(108 Rex)

(17.26)

Prandtl — Schlichting!s Plate Drag Law

The laminar approach length may egain be teken Into comsideration
by the same subtractlon as before; thus:

0.455 1700 5 X 10°

2.58 Re
(108 Rey)! x < Rey < 107

Cp = (17-27)

Whereas %the system of formuilas equation (17.25) is valid up to Re—numbers
of arbitrary magnitude, the interpolation Fformmlas, equations (17.26)

and (17.27), have the upper limit Re = 10°. However, this 1limit takes
care of all Re-numbers occurring in practice. The theoretical formmla
(equation (17.27)) is also plotted in Ffigure 87. Figure 88 gives a
comparison with test results on plates, wings, and airship bodies. The
agreement is quite good.

Very recently thls plate dreg lew has been somswhat improved by
Schultz-Grunow (reference 89). Until then, the turbulent velocity profile
measured in the, pipe (1/7-power law, logarithmic law) hed been carried
over ‘directly to the plate, mainly because accurate veloclty distribution
, measurements of the plate boundary layer did not exist. The exact
measurement of the plate boundery layer showed, however, that the plate
profile does not completely colncide with the plpe profile. The test
points show, for large distance from the wall, a slight upwerd deviation
from the logarithmic law found for the plpe. Thus the loss of momentum
on the plate is somewhat smaller than that calculated with the logarithmic
law. Schultz-Grunow repeated the calculation of the drag law according
to the formula system given above with the velocity distribution law
for the plate measured by him. Hisg result is represented by the
interpoleation formule '

cp = 0.427 100 < Reg < 10°

(— 0.407 + 1og Rex)2’6lL

(17.28)
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Thig law 1g also plotted in figure 87. The differences from the Prandtl-—
Schiichting law are only slight.*

The corresponding rotationally-symmetrical problem, that is, the
turbulent boundary layer on a body of revolution at zero Incldence, was
treated by C. B. Milliken (reference T79). The l/7-power law of the
veloclty distribution was teken as basis. Applicatlon to the general
cage has not yet been madse. '

Twelfth Lecture (February 23, 1942)
b. The Rough Plate

The conversion from plpe reslstance to the plate drag mey be carried
out for the rough plate in the same manner as described previously for the
semooth plate. One assumes a plate uniformly covered with the same rough-—
negs k. Since the boundary layer thickness 8 Increases from the front
toward the rear, the ratio k/B whick 1g significant for the drag decreases
from the. front toward the rear. Behind the initiel laminar rm, therefore,
follows at first the reglon of the fully developed rouglness flow; the so—
called intermediate region follows and farthest toward the rear there is,
finally, 1f the plate 1s long enough, the region of the hydraulically
smooth Plow. These regions are determined by specification of the numerical
values for the roughness coefficient v*ks/v. In order to obtain the drag

of the rough plate, one must perform the conversion from plpe flow to plate

flow for each of these three regions lndividually. Thls celculation was -
carried out by Prandtl and Schlichting (reference T6), based on the results

of Nikuradse (reference Tl) for the pipe tests with sand roughness. For

this conversion one starts from the universal velocity distribution law of

the rough pipe according to equation (16.28), the quantity B being

dependent also on the characteristic roughness value v*k /v, according

to figure 84. The calculation takes basically the same course as described
in detall for the smooth plate in chapter XVIIa. It is, however, rather
complicated and will not be reproduced here. One obtains as final result
for the total drag coefficlent of the sand-rough plate a disgram (fig. 89)
-which represents the drag coefficlent as a function of the Reynolds

number Uyl/v with the relative roughness 1/k, as parameter. Just as
for the pipe, a given relative roughness z/ks has a drag Increasing

effect not for all Re-numbers, but only above a certain Re—number. This
diagram 1s applicable alego for roughnesses other than sand roughness, if
one uses the equivalent sand roughness. In the dlagram (fig. 89) the
square dreg law 1s attained, Just as for the pipe, for every relative

¥ The tebles pertaining to the pleate drag formuilas are given in
table T, chapter XXII. -
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roughness 1/k, provided the Re—number is sufficlently large. The
Interpolation formmla

2.
cp = <}.89 + 1.62 1log i?;) 2 (17.29)
s

applles to this law.

¢. The Admlssible Roughness

The problem of the admissible roughness of a wall in a flow is
very important in practice since it concerns the effort that might
reasonably be expended in smoothing & surface for the purpose of drag
reduction. Admissible roughness signifies that roughness above which a
drag increase would occur in the given turbulent friction layer (which,
therefore, still is in effect hydraulically smooth). The admissible
relative roughness ks/z decreases with increasing Re—number Ubl/b

as one can see from figure 89. It is the point where the particular
curve Z/ks diverges from the curve of the smooth wall. One f£inds the
values for the admissible relative roughness eccording to the following
table; they cen also be combined into the one formula

Uo Xs admiss. _ ;42

17.30)
; (17.30)
T 1
—;’— 100 10° 107 108 10°
k — _
(—f) 103 | 0¥ 107 1070 107
admiss,

From equation (17.30) one recognizes that the admlssible roughness helight
is by no means a function of the plate length. This fact is significant
for instance Por the admlissible roughness of a wing. Equation (17.30)
states that for equal velocity the admissible roughness height is the

same Por a full scale wing as for a model wing. Let us assume a numerical
example:

Wing: chord 1 2m

Veloclity U,

300 km/h = 83 m/sec
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From equation (17.30) results an admlssible magnitude of

roughness kg = 0.02 mm. This degree of smoothness 1g not alwayse attained
by the wing surfaces manufectured in practice, so that the latter have a
certain roughness drag. In the conslderations Just made one deals with

an increase of the friction drag Iin an a priori turbulent frictlion layer.

However, the roughness may also change the drag by disturbing the
laminer frictlon layer to such an extent that the point of laminar/
turbulent transition is shifted toward the front. Thereby the drag can
be increased or reduced according to the shape of the body. The drag i1s
increased by thils displacement of the transition polnt if the body in
question has predominant friction drag (for instance wing profile). The
dreg might be reduced, circumstances permitting, for a body with pre—
dominant pressure drag (for instance, the circular cylinder). One calls
the roughness height which causes the tramsition the "critical roughness
height". According to Japanese measurements (reference 77) this critical
roughness helght for the laminar friction layer is given by

Viorit _

v 15 (17.31)

A numerical example follows:

Agsume, as prescribed before, a

wing 1 =2m
U, = 300 lm/h = 83 m/sec

then Re = U,1/¥ = 107. Consider the point of the wing x = 0.11, thus
Rey = be/v = 106. Up to this point the boundary layer might remain
laminar under the effect of the pressure drop. The wall shearing stress

for the laeminar boundary layer is according to equation (9.17)

2
.10.- = 0. 21U 2g= 0. 2 .6292 = 2, n
2= 0332 0"\ = 0.332 =2 < 2.9 7y

hence:
vx = V1o/p = 1.52 m/sec

and according to equation (17.31)

= 10% = 0.1
kcr:l'b Vx _h e

15.1::—11-
1.52

-
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The critical roughness height causing the transition 1s, therefore, about
ten tlmes as high as the roughness height admissible in the turbulent
friction layer. The laminar friction layer therefore "tolerates" a
greater roughness than the turbulent ons.

The following can be said ebout the Influence of the roughness on
the form drag: Sharp—edged bodies are indifferent to surface roughnesses
because for them the transition point ls fixed by the edges, as for
instance for the plate normal to the flow. Short curved bodies, on the
other hand, as for instance the clrculear cylinder, are sensitive. TFor
the circular cylinder the crltical Reynolds number, for which the known
large pressure drag reductlon occurs, is largely dependent on the
roughness. With increasing relative roughness k/R (R = radius of the
circular cylinder) Re,,.i decreases. According to British measurements

(reference 90) the drag curves for a clrcular cylinder with different
relative roughnesses have a course as indicated in figure 90. The
boundary layer is so disturbed by the roughness that the laminar/turbulent
transition occurs for a considerably smaller Re-number than for the

smooth cylinder. The roughness has here the same effect as Prandtlts

trip wire, that 1s, in a certaln region of Re-numbers it decreases the
drag. It 1s true, however, that the supercritlcel drag coefficient is
then always larger for the rough circular cylinder than for the smooth
one.

CHAPTER XVIIT. THE TURBULENT FRICTIOR LAYER IN

ACCELERATED AND RETARDED FLOW

The cases of turbulent frictlion layer treated so far are relatively
simple Insofar as the velocliy outslde of the frlctlon layer along the
wvall is constant. Here as for the laminar flow the case of special
interest is where the velocity of the potential flow 1s varisble along
the wall (pressure drop and pressure rise). As Por laminar flow, the
form of the boundary layer profile along the wall 1s variable. In
practice thls case exlsts for instance for the friction layer on the
wing, on the turbine blade, and 1n the diffuser. OFf speclal Interest is
thequestion of whether separatlion of the bowmdary layer occurs and,
if so, where the separation polnt is located. The problem consists
therefore for a prescribed potential flow in following the turbulent
Priction layer by calculation. The calculatlon of the turbulent friction
drag is of importance. The corresponding problem for the laminar friction
layer was solved by the Pohlhausen method (chapter X).

For the turbulent friction layer the method of Gruschwitz
(reference T8) proved best. Gruschwitz mekes the asumption that the
velocity profiles of the turbulent boundary layer for pressurs drop and
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rise can be represented as a one-paramster femily, if one plots u/U
ageinst y/9. § elgnifies the momentum thickness which 1s, according
to equetion (6.32), defined by:

S
U8 =| w(TU-u) 8y (18.1)
o
As form parameter one selects
2 . _
n=1 _<——u(‘”> (18.2)
U

u(?) denoting the velocity in the friction layer at the distance from
the wall y = 4. That 17 actually 1s & serviceable form parameter can
be recognized from filgure 91 where a famlly of turbulent_boundary layer
profiles 1s plotted according to Gruschwitz. Gruschwitz found from his
measurements that the turbulent separation polnt is gliven by

n = 0.8 (Separation) (18.3)

The form parameter 1 1is analogous to the Pohlhausen—parameter A of

the laminer frictlion layer. However, a conslderable difference exlsts
between n and A: for the laminar friction layer an analytical relation
exlsts between A and the pressure gradlient and the boundary layer
thickness, namely according to equation (10.41)

82 T

» = —2 U (18.4)
vV oax

Such & relation 1s thus far lacking for the turbulent boundary layer,
since one does not yet possess an analytical expression for the turbulent
velocity profiles¥*. One needs therefore an empirilcal equlvalent for
equation (18.4),

For the special case of the turbulent friction layer without

pressure gradient where the 1/T-power law u/U = (y/s)l/7 applies for
the velocity profile, one finds from equations (18.1) and (18.2)

* Compare, however, chapter XXITb, where under certaln assumptions
such an analytical comnectlion 1s indicated.
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3. L = 0.
5~ 72 n = 0.487 (18.5)

Since in the case of the turbulent boundery layer, an analytical
expression for the velocity distribution does not exist, the calculation
is limlted to the determination of the four characteristics of the friction
layer: form paremeter n, wall shearlng stress 7 ,, displacement
thickness 8%, momentum thickness §. Four equations are required for
thelr calculation.

As for the laminer boundary layer, the momentum theorem yields
the first equation; the momentum theorem mey, according to equation (10.36)
be wriltten in the form:

i .
Jrm (1) (18.6)

mlc'o

T
o _ & 18*
e_dx+<l+2 '8>

The second equation is ylelded by the function

%ﬁ = H(n) (IT) (18.7)

obtained by Gruschwitz by evaluetion of the measured veloclty proflles
(fig. 92), and regarded as generally valid. It can be derived also by
calculation from the form of the velocity profile (compare appendix
chapter XXIT) and yields:

n=1-— [E=1_ L (18.8)
H(E + 1)

The third equation is empirically derlived by Gruschwitz from his
measurements., He conslders that the energy vurlation of a particle moving
parallel to the wall at the distance y =49 is a function of wug, U, 3, V.
Dimension conslderations suggest the following relation:

dg,

=z - F(n, Re) (18.9)

3
q

U2 and 8 =P+ 2 13 signify the total pressure in the layer
The svaluation of the test results showed that a dependence on

=
||

£
2
9.

y:
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the Re-number i1s practically non—existent, and that one can represent
equation (18.9) in the following manner:

dg;y

—= = 0.0089% 7 — 0.00461 (18.10)

£
g

Furthermore, the ldentity

g -8 =p+50°—p-Fu,

il
o
%
7N
|
=1
Gl
S
1
Q
=

1s valld. One puts

an=¢§ (18.11)
and has therefore
dg
— - . ig. (18_12)
dx dx

Now equation (18.10) can be written:

9 %El; = — 0.00894 ¢ + 0.00461 q (IIT) (18.13)

The fourth equation is still missing and 1s replaced by the following
estimation of T5: According to the calculations for the plate in

longitudinal flow, equation (17.7) was:

T o _ s l/ll- _ —l/)-l-
;EE = 0'0225<:§7 = 0.0225 (Reg) (18.14)

If one takes into ‘consideration that for the 1/7—power law of the velocity
distribution:
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5 9 =-L5

3
o
*
]
ool oy

one can write equation (18.14) also:

)
T —1/k —1/4
—U—g = 0.01338 (Regy) = 0.01256 (Reg) (Iv) (18.15)
o)
For calculation of § and n (¢t = q 7n, respectively) one must now solve
the Pollowing system of equations: '
ag 4 a
(18.16)
T
- ix 2)qdx g2
-
q-= g-U'Q is a given function of x; H and ?o are given functions
- p °

of 0 = g/q or 9, respectively. This system of equations is to be
solved downstream from the transition point.

Tnitial values: As initiel value for 8 one tekes the value from
the laminsr Priction layer at the transition point:

Soturb, = “otam. (18.17)

Thig 1s based on the consideration that the loss of momentum does not
vary at the transition point since it glves the drag. The initial value
of 71 1s somewhat arbitrary. Gruschwitz takes

T]o = 0.1

and states that a different cholce has little ian_.uence on the result.

With these initial values the system of equations (18.16) may be
solved graphically, according to a method of Czuber (compare appendix,
Chapter XXIT, where an example 1s giveny. A first approximation for 3
1g obtained by first solving the second equation with constant values

for T4 /P and H;
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To
— = 0.002; HE=1.5 B (18.18)
pU

are appropriate. Thereby the second equation is a differential equation
of the first order for §. This first approximation 49,(x) is then

substituted into the first equation, which then becomes a differential
equation of the first order for ¢(x); 1let its solution be denoted
by gl(x). Thus one has also & first approximation for n: nl(x).

With ql(x) one determines the course of H(n) according to figure 92
end is now able to improve T according to equation (18.15). These
values of both H and T, are nov inserted in the second equation, and
a second approximation §,(x) 1is obtained. By substitution of §,(x)
into the first equation one obtains the second approximation {,(x), etc.

The method converges so well that the answer 1s essentially attained Iin
the . gecond approxlimation.

The separatlion point 1s glven by
1 = 0.8

Incidental to the boundary layer calculation one obtains the following
characteristic values of the friction layer as functions of the arc
length =x:

s(x), B®%(x), n(x), 7o(x).

The boundary layer calculation for the profile J 015, c¢, =0 1s given

as example in figure 93, The transition polnt was assumed at the velocity
maximim. The calculation of the lamlinsr boundary layer for the same case
wag Indicated In chapter XII. The detalls of this example are complled
in the appendix, chapter XXIT.

Tt should be mentioned thaet the calculation for the turbulent
boundary layer mist be performed anew for every Re—number UbZ/b, whereas

only one calculation was necessary for the laminar boundary layer. The
reagons are, flrst, thet the transition polnt travels with the Re-number,
end second, that the initial value of ¢/t varles with Re, since for

"U t
the laminar boundary layer %- —2_ at the transition point is fixed.
v

It must be noted that the values obtalned for To become incorrect

in the nelghborhood of the meparation point: At the separation point To

mist equal zero, whereas equation (18.15) gives everywhere To # 0.

¥

4
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Boundary Iayer Without Pressure Gradient

In this case q(x) = Constant. Equation (18.13) can be written:

%%xs = — 0.00894n + 0.00461 (18.19)
or, because q(x) = constant;
#- - (18.20)
Thus equation (18.19) becomes:
) ;:% = — 0.00894n + 0.00461 (18.21)
A solution of this equation is:
n = 2008 - 0516 - (18.22)

Since at the beginning of the turbulent friction layer n 1is smaller
than this value (transition point 7 = 0.1) and since according to
equation (18.21) dn/dx >0, n must in this case approach the value

N = 0.516 asymptotically from below. For the velocity profile of the
1/T-power law, 7 = 0.487 (compare equetion (18.15)). The profile
attained asymptotically for uniform pressure (p = constant) therefore
almost agrees with the l/’{—power law that was previously applied to the
plate in longitudinal flow.

A great many boundary layer calculations according to this method
are performed in the dissertation by Pretsch (reference 80)}.

Thirteenth Lecture (March 2, 1942)

CHAPTER XTIX. FREE TURBULENCE

a. General Remarks; Estimations

After considerihg go far almost exclusively the turbulent flow
along solld walls, we shall now treat a few cases of the so—called free
turbulence. By that one understands turbulent flows where no solid walls
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are present. Examples are the spreading of a Jet and its mixing with the
surrounding fluid at rest; or the wake flow behind a body towed through
the fluld at rest (fig. 94). Qualitatively these turbulent flows taeke a
course similar to that for the laminar case (compare chapter IX); quenti—
tatively, however, considerable differences exlet, since the turbulent
friction is very much larger than the laminar friction. In a certaln way,
the cases of free turbulence are, with respect to calculations, simpler
than turbulent flows along a wall, since the laminar sublsyer is not
present and the lamlnar friction as compared with the turbulent one can
therefore be neglected for the entire flow domain. The Pree turbulence
may be treated satisfactorlly with Prandtlts concept of the turbulent
shearing stress according to equation (15.9):

2‘% ’% (19.1)

the mixing length 17 belng assumed a pure position function. The
turbulent friction has the effect of meking the Jet widih lncrease and
the velocity at ite center decrease with increasing dilstence along the
Jet.

We now perform rough calculations, according to Prandtl (reference 2,
Part I), for a few cases of free turbulence which give information about
the laws governing the Increase of wildth and the decrease of "depth" with
the distance x.

It has proved useful for such turbulent Jet problems to set the
mixing length 1 proportional to the Jet width b:

% = B = constant (19.2)

Furthermore, the following rule has held true: The Increase of the
width P of the mixing zone with time 1s proportional to the fluctuation

of the transverse velocity v':

02~ (19.3)
D/Dt eignifies the substantial derivative; thus: D =1 jl + v jl.
Dt ox oy
According to our previous estimation, equation (15.5): +v!' =1 g:;

Therefore:
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. b, ;S (19.4)

Dt dy

Furthermore, the mean value of g% equels approximately:

J
QE = nunber Tmax
oy b
and thus:
Db A
5 = number £ u = number B w (19.5)

Jet (Plane and Circular)

We shall estlimate, by means of these relatlons, how the width
increases with the distance x &and the weloclity at the center decreases.
At first, for the clirculear as well as for the plane Jet:

Db _ @
= = nunmber W . (19.6)

Tt follows, by comparison with equation (19.5):

number = number

1=y B

ab
dx

b

number x + constant

If the origin of coordinates is sultably selected (it need not coincide
with the orifice) one has therefore:

b = number x (plane and circular jet)  (19.7)

The relation between Upoy and x 1s obtained from the momentum

theorem. Since the pressure is constant, in the x—direction, the x—
momentum must be independent of x, thus:

. . J=p [u2 & F = constant
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whence follows for the circular Jet:

2 2
J = number p u max b
or:
1l .{J
= nunmber = \{—
Yax b \lp

and because of equation (19.7):

J
]

1
Upay = Dumber = (circular Jet) (19.8)

For the plame Jet, if J* silgnifies the momentum per unit length of the
Jot:

J' = nuwber p 1132 b
1 ?
Wypoy = number —— -J‘;—-
o

and because of equation (19.T):

1 \[T

Upay = Dumber — 5 (plane Jet) (19.9)
x

Weke (plane and circular)

The celculation for the wake ls somewhat different, since the
momentum which gives dlrectly the drag of the body must be calculated in
a slightly different way. The momentum integral is now (compare
equation (9.40)):

W=J=pfu(Uo-u)d.F (19.10)

At large dlstance from the body u' = Uy —u 1s small compared with Uy,
(fig. 95) so that u'<«< U, and
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u(Uy —u) = (Ug —ut) u' & Uy ut
Thus one obtalns for the clrcular wake:

%chUo2~'on ut x b2

' ¢c F
¥
Uo nbg

Db db
= =T7. =
Dt  © dx
and instead of equation (19.5):
Db _ 1
5T = nunber ) ut

Equating of equations (19.12) and (19.13) glves:

g &

o ~%u!=ﬁu‘l

Rl&

By comparison with equation (19.11) one obtains:

p2 b

dx n'cw

b ~\3’ Be, Fx (Wake Circular)

By insertion in equation (19.11) results:

1/3

ut _1/%% F

- w3 (Weke circular)
(o] B X

23

(19.11)

(19.12)

(19.13)

(19.1%)

(19.15)

(19.16)
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For the plane wake behind a long rod, wing, or the like with the

diameter d end the length L, W =o & v.2Ld and

W=JampU,u'bL

and hence:

o)
oy

~ X 19.1
5T (19.17)

S

and from this in combination with equation (19.1k4):

db
2b = ~B Cor d

b~ \’B cdx (wake plane) (19.18)

By substitution in equation (19.17) results:

ut 1 cwd 1/2
et e (Welke plane) (19.19)
(o]

Thus, for the circular wake, the width increases with Gax, and
the velocity decreases with x_2/3; for the plane wake, the width

increases with \ X, and the velocity decreases with =L/2,

The power laws for the width and the velocity at the center are
complled once more in the following table. The corresponding laminar
cases which were partlelly treated In chapter IX, are included. More—
over, the case of the free Jet boundary 1is glven, that 1s the mixing of
a homogeneous ailr flow with the adjoining air at reést. (Compare
figure 97.)
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Laminar Turbulent
Velocity at Center Veloclty at Center
u u
Case | Wig.th Ormai, Wi%th ormaﬁ.
regpectively . respectively
Plane Jet 2/3 /3 x /2
Circular Jet X 1 x L
Plane weke /2 x1/2 x1/2 /2
Circular wake x1/2 1 x1/3 2/3
Free jet boundary x1/2 x° x x°

POWER LAWS FOR THE INCREASE WITH WIDTH AND THE DECREASE OF VELOCITY
WITH THE DISTANCE x

For a few of the cases treated here the velocity distribution will
be calculated explicitly below. The calculation on the basis. of the
Prandtl mlxing length theorem was performed for the free Jet boundary,
the plane Jet, and the circular jet by W. Tollmien (reference 81), for
the plane wake by H. Schlichting (reference 82) and for the circular
wake by L. M. Swain (reference 83).

The. equations of motion for the plane stationary case are, according
to equation (14.14), if the laminar friction terms are completely
neglected: I

\

d __13,1%g 1%y
Ty T TRy T  x e Ty > (19.20)
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b. The Plane Wake Flow

We shall now calculate the velocity distribution for the plane wake
flow. A cylindrical body of diameter d& and span h is considered.
Further, let

ut =7 —u : (19.21)

be the wake velocity. One applies the momentum theorem to a control

aree according to flgure 95, the rear boundary B C of which lises at
such a large distance from the body that the static pressure there has
the undisturbed value. As shown in detail in chapter IX, equation (9.4k0),
one obtalns:

=
I

hp|[ ufU,—u)dy
BC
(19.22)

W=hp/ (Ug — u') ut dy
BC

For large dlstances behind the body u' << U, 80 that one may

2 - _
approximetely neglect the term ut in comparison with U, u* in
equation (19.22). Hence:

x—>w: W=hp UO/ ut dy (19.222a)
BC

2
Since, on the other hand W =1c,d h %U s ‘there becomss:

+b
wdy=2c, 4aU : (19.23)
-b
This problem can be treated wlith the boundary layer differential equations;
they read according to equation (19.20) with the Prandtl expression for the

turbulent shearing stress according to equetion (15.9), with p and Oy
neglected:



NACA TM No. 1218 5T

nu—+7v = == 2] ———
oy oy oy Sy )
(19.24)
Su , OV _
- + - 0
For the mixing length one puts, according to equation (19.2):
1=B D (19.25)
Further:
ut =ug b uy t. .o ¥ . (19.26)
y
n=z (19.27)

For the weke veloclity wu; and the width b the power laws for the

decreasge and increase, respectively, with -x were already found in
equaetions (19.18) end (19.19). One therefore writes:

-1 /2
E_i - <c:_d> /2 tn) (19.28)

b =3 (cya x)/? (19.29)

According to equatioms (19.27) and (19.29)

éﬂ _ 1 . on 1nq
oy B(de. x)l/2 ox 2x

The estlimatlion of the terms in equation (19.24) with respect to their
order of magnltude in x glves:

2
g&-v x73/2; =LA x—3/2; Su ., x_l; é-E'Y”x_B/?; =L

vex
oy © oy ay2

*The terms up . . . signify additional terms of higher approximstlon,
which disappear according to & higher power of x than does u,.
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ou —3/2

) .
Hence the term v =~ X whereas the largest terms ~ x . Thus

equation (19.24) is simplified to:

2

Ju d

._Uo__l.=2 12311_1__11_ (19.30)
3 & 3P

The neglected terms are taken into account only in the next approximsetion.
The further calculation glves: - -

o _ /xR 1
dy Clec d 1/2
v B(c,d x)/
2 S
aul x _1/2 " 1
% <"E> i
ay W B cwdx

2 ) .

2 duy Ouy 2 o -1 " 1
217 2L 1o Uo(-x-) et ——p
R4 BYZ ol B(cwdx)l €

After insertion in equation (19.30) and eliminating the factor

—1/2
U 21 <—%) the following differential equation results for £(n)
o X \3,

2
Z(e+ner) = pren | (19.31)

The boundary conditlons are:
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That is:

n=1 £=F%'=0 (19.32)

The differential-equation (19.30) may immediately be integrated once
and gives:

2
£fn-= E]; £12 4+ Constant

-

Because of the boundary conditions, the integration constant mst equal
zero; thus:

e 2

hig

2
_B
f'f]——B—

ol -

This may be Integrated in closed form:

2
(/2 /2 _\[28” ar
B dn

af B
o VaE

2fl/2 =\[B-2 ~r|3/2 + Constant
op2 3

) 2
3 \l2p _

|—b
0

Because f =0 for n =1, c=-%,2 and hence:
3 Vep2
1 B ( 3ﬂ%2
=4 B_(3 — 19.
£ 5 2 n (19.33)
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The condition f' =0 for 7 =1 1is simltaneously satisfied according

to equation (19.33). In £", that is g—a-%, a singularity results at the
32

center (n = O0) and on the edge. For 1 =0, f£" =o; the velocity

profile there has zero radlus of curvature. At the edge there exists

a discontlnuity in curvature. In contrast to the laminar boundary

layer solutlons, where the velocity asymptotically approaches the value

of the potential flow, one obtalns here velocity profiles which adjoin

the potentlal flow at a finlte distance from the center.

The constant B remains to be determined:
+b * b b 1

f ut dy =%*2 ut dy = 2 u; dy = 29U, c,d B £(n) dn
—b 0 0 0

1 2
From equation (19.33) one finds: 2f (l - n3/2) dn = I% and hence:
o)

1
Ef £(n) an =—B—2
0 208 -

and, by comparison with equation (19.23):

b
2
2f w4y = ol B U, =2 0yd Ty
0 208

b
20p°

; B=VIOB (19.34)

[V

Thus the final result for the width of the wake and the velocity
distribution from equations (19.28) and (19.29) is:

¥Reviewer's note: Integrating from —1 to +1, as was done in the
original German version, results in an Imaglnary term, which was avoided
In the tresnslation by Ilntegrating from O to +1 and doubling*the result.
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o
I

V10 B (Gwd x)l/2

/ 3/2 ‘2
u —-1/2 y
i‘%(oz_d) E'(%) _

The constant B = Z/b 1s the only empirical constant of this theory; it
mist be determined from the measurements.

(19.35)

Comparison with the tests of Schlichting (reference 82) shows that
the two power laws (equations (19.28) and (19.29)) are well satisfied,
and algo that the form of the velocity distribution shows good agreement
with equation (19.35), figure 96. The constant B is dstermined as

=L=
B =3 =0.207

The solution found is a first approximation for large distances; according
to the measurements it is valid for x/cwd 2 50, TFor smaller distances

one may calculate additional terms which are proportional to xri, -x—3/2,
. . « for the wake velocity in equation (19.26).

The rotationally-—symmetrical wake problem was treated by
Miss L. M. Swailn (reference 83). For ths first approximation results
exactly the same function for the veloclty distribution; only the power
laws for the width b and the velocity at the center qm' are different,

namely b n»xl/3 and up? nrx72/3, as already indicated in
equations (19.15) and (19.16).

Fourteenth Lecture (March 9, 1942)
¢. The Free Jet Boundary
The plane problem of the mixing of a homogeneous air stream with
the adjolning air &t rest shall also be treated somewhat more accurately
(fig. 97). It is approximately present for instance at the edge of the
free Jet of a wind tunnel. The problem was solved by Tollmien :

(reference 81).

The veloclty profiles at various distances x are affine. One
sets

u = U f(n) = UF'(q) (19.36)
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and

7(n) = [ 2(n) an

Furthermore set
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(19.37)

(19.38)

(19.39)

One integrates the continuity equation by the stream function:

v=fudy=onff(n) dn =T, x F(n)

Then:

U
nE"; % ==

Fl
I
|

ve-5=-7, (F — nF?)

le\)
o

oy

o
Hroloq

(19.40)

(19.40a)

Subetitution into the equation of motion (19.39) gives, after division

by U°2 /x;

2

FF" + 2¢°~ FUpt"

=0

(19.41)
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The boundary conditions are:

at the inner edge:

—j
= M = . t =
n =18 u Ub. F 1
ou
- = 03 ' =0
oy
v = 0 F =1
1 , (19.42)
at the outer edge:
n = 7ot u = 0: Ft =0
Su _ o, ' =0
oy
J

Since the boundary points n; and 1, ere stlll free, these five boundary

conditions can be satisfied by the differentlal equation of the third order '
equation (19.41). By introduction of the new variable:

= —L_ (29.43)

\3/ 202

the differential equation (19.41) ie transformed into (! = differentiation
with respect to %) :

FF'+ F' Ft" = 0 (19.kk4)

The solution F" = 0, which gives u = Constant, 1s eliminated. The
general solution of the llnear differentlal equation .

F+F" =0 _ (319.45)

is

*
F = eln

with ) signifying the roots of the equation x3 + 1 =0, thus:
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Hence the generel solution is:

el o
F =0y o 4 C, e2 cos(v?g n*) + Cq e2 sin(\(—; 'q*) (19.46)

If,'moreover, one measures the n—coordinate from the inner boundery
point, thus puts:

* = n¥ — n¥
n n LY

the solution (equation (19.46)) can also be written:

+ dp e cos <%§'ﬁ¥) + d3e gin (%; H;)

of
of%

—_ox

From the boundary conditions (equation (19.42)) result for the constants
the values:

¥ = 0.981 ; ng = — 2.0k ; 1% = — 3.02
dy = ~0.0062; dp =  0.987; dg = 0.577

For the width of the mixing reglon one cbtains:

o’
]

x(“l - "2) - x\ke? ("f - "3)

o
I

3.022¢2 x ]

The constant c¢ must be determined from experimsnts. From measurements
it 1s found that

P = 0.255 x ; = (19.47)
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Hence
\Q/;;§-= 0.0845; ¢ = 0.017k
and
% = 0.0682  (19.48)

It is striking that here the ratio Z/b is esgentially emaller than for
the Wa.ke .

The distribution of the velocity components u and v over the
width of the mixing zone is represented in figure 98.

From the second egquation of motlon one may calculate the pressure
difference between the alr at rest P, and the homogeneous air stream Py

One finds:

-p =0. g2
go) P 9 o048 5 U,

1 (19.&9)

Thus an sxcess pressure of one-half percent 1s present in the Jet. TFor
the inflow velocity of the entralned alr one finds according to -
equation (19.40a):

Ve o = -'F(ﬂg) U, = + 0.379 202 Uo

and with the measured value of c;

V_ o = 0.032 Ty (19.49a)

d. The Plane Jet

In & similar manner one may also calculate the plane turbulent Jjet
flowing from a long narrow slot (compare fig. 94). The laws for the
increase of the width and the decrease of the center velocity havgl
already been given in equations (19.7) and (19.9): b ~ x; iy ~ =
The calculation of the veloclty distribution was carried out by Tollmien
(reference 81); it leads to a non—linear differential equation of the
second. order the integration of which 1s rather troublesome. Measurements

for this case were performed by Férthmenn (reference 91). In figure 99
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the measurements are compared with the theoretical curve. The agreement
is rather good. Only in the neighborhood of the velocity maximum is
there a slight systematic deviation. There the theoretical curve is
more pointed than the measured curve; the theoretical curve, namely,
agalin has at the maximum e vanishing radius of curvature.

According to the Prandtl formula, equation (15.9), the exchange
becomes zero at the veloclity maximum, whereas actually a small exchange
is stlll taking place.

e. Connectlon Between Exchange of Momentum,
Heat and Material
In concluding the chapter on turbulent flows I should like to
make a few remarks about the commection between the turbulent exchange
and the heat and material transfer In a turbulent flow.

In the Prandtl theorem equation (15.9) for the apparent turbulent
gtress:

% I % = A %% (19.50)

one can interpret:

_ 2 |ou| |kg sec
la?l[—re]

ag a mlxing factor. It has the same dimenslon as the laminar viscoslty u.
Furthermore, the shearing stress T may be interpreted as & momentum flow:

T = momentum = momentum Flow (19.51)

2
m sec

Momentum = mass ¥ velocltiy = ﬁcg secﬂ .

Another effect of the turbulent mixing phenomene, basldes the
increased apparent viscosity by transport of momentum,is the transport
of all propertles Ilnherent in flowing matter, as heat, concentration of
impurities, etc. If thils concentration ie not uniform, more heat or
impurity is carried away by the turbulent exchange from the places of
higher concentration than is brought back from the plasces of lower concen—
tration. Thus there results, on the average, transfer from the places of
higher to those of lower concentration.
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This results, Por temperature differences, Iin a turbulent heat
transfer; for concentration differences (for instance, of salt), in a
turbulent diffusion. They can, in analogy to equation (19.50) be expressed
as follows:

Momentum flow = Domentum transport _ A, a ( momentum
m? s6C dy \unit mass

o unit mass

Heat flow = fheat transport _ A, JL.( " heat )
m- sec dy

transport of material material

d
) - AM.EE'(unit mass
mn~ sec

Flow of material =

The heat content of the unlt mess ig ¢.8 {8 = temperature,

P
oy = gpecific heat = [‘ 021 s ). For chemical or mechanical

kg sec degree
concentrations the concentration of material per unit mass is called the
concentration ¢; it is therefore the ratlio of two masses and therefore

dimensionless. Thus the gbove equatlons may also be written In the
following forms:

j
T Aq_%§
d(c.8 -
Q:-AQ__(ﬁ ) > (19.52)
M=-AM%§
/

The question arises as to whether A, Aq, AM are numerically the same

or different. TIf the momentum is transported exactly like heat or matérial
concentration — Prandtl!s theorem is baged on this assumption — it would
follow that A, = AQ = AM and, for instance, the veloclty and temperature

distributions in a turbulent mixing region would have to be equal.
However, measurements show partially different behavior.

One has to distinguish between wall turbulence and free turbulence.
Concerning free turbulence, calculetions of G. I. Taylor (reference 92)
and measurements of Fage and Fallmer (reference 93) showed for the veloclity
and temperature profile of the plane wake flow

%‘ =2 (free turbulence) (19.53)
-
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The heat exchange 1s, therefore, larger than the momentum exchange.
Congequently the temperature profile is wlder than the veloclty profile.
The theory glven for that phenomenon by G. I. Taylor operates with the
conception that the particles, in their turbulent exchange movements,

do not maintain thelr momentum (Prandtl), but thelr vortex strength ou

(Prandtlts momentum exchange theory ~ Taylor's vorticity transfer
theory). However, there are cases not satisfied by the Taylor theory

(for instance the case of the rotationally symmetrical wake). That the
heat exchange for free turbulence is considersbly larger than the momsntum
exchange 18 also shown by experiments of Gran Olsson (reference 88)
concerning the smoothing out of the temperature and velocity distributions
behind grids of heated rods. With increasing distance behind the grid

the temperature differences even out much more rapidly than the differ—
ences in velocity.

For wall turbulence the difference between the mlxing factors for
momentum and temperature 1s smaller. H. Reichardt (reference 87) was
eble to show, from measurements of the temperature dlstribution in the
boundary layer on plates in longitudinal flow by Elias (reference 86)
and in pipes by H. Lorenz (reference 14}, that here

A .
KQ = 1.k to'1.5 (wall turbulence) (19.54)
T

Herewlth we sghall conclude the conslderations of free turbulence.

CHAPTER XX: DETERMINATION OF THE PROFILE DRAG FROM

THE LOSS OF MOMENTUM

The method, previously discussed in chapter IX, of determining
the proflle drag from the veloclty distribution in the wake 1s rather
importent for wind tunnel measurements as well as for flight tests; we
shall therefore treat 1t 1n somewhat more detall., The determination of
the drag by force measurements 1ls too lnaccurate for many cases, in the
wind tunnel for ingtance due to the large additional drag of the wire
suspension; in some cases (flight test) it is altogether impossible. In
these cases the determination of the drag from the wake offers the only
gervicegble posslbility,

The formule derived before in chapter IX, equation (9.k1) for
determination of the drag from the velocity distribution in the wake 1sg
valid only for relatively large distances behind the body. It had been
assumed that in the rear control plane (test plane) the static pressure
equals the pressure of the undlsturbed flow. However, in practically
carrylng out such tests in the wind tunnel or in flight tests one is
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forced to approach the body more closely. Then the statlc pressure gives
rise to an additional term in the formula for the drag. For measurements
close behind the body (for instance,; for the wing, for x < %) this term
is of considerable importance, so that 1t .must be known rather accurately.
A formila was indicated, flrst by Betz (reference 84), later by B. M. Jones
(reference 85) which takes this correction into consideration. Although
at present most measurements are evaluated according to the simpler Jones
formila, we shall also discuss Betz! formula since 1ts derivation In
particular ls very interesting.

a. The Method of Betz

One imagines a control surface surrounding the body as shown in
figure 100. In the entrance plane I ahead of the body there 1is flow
with free—stream total pressure 8o behind the body in plene IT, the
total pressure &, <:go. The lateral boundaries are to lle at so large
a digtance from the body that the flow there 1s undisturbed. In order '
to satisfy the continuilty condition for the control surface the velocity
us 1In plane IT must be pertially greater than the undisturbed velocity

Up. Consider the plane problem; let the body have the height h.

Application of the momentum theorem to the control surface glves:

+ o + oo

2
W=nrh (Pl + puIE)dy - <%2 + pu é) ay (20.1)

— GO -0

In order to make this formula useful for test evaluation the integrals
mist be transformed in such a manner that the integrals need to be extended
only over the "wake". For the total pressures

~
at infinity: go = po + ng62
p 2
in plane I: 8, =D + 3 uy > (20.2)
p .2
in plane II: 32 = 92 +3 U,
| /

Outside of the wake the total pressure everywhere equals 8o° Hence
equation (20.l) becomes
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+ o 4 0

W=nh <go ~g,)dy + -g- <u12 - u22>dy (20.3)

-— 00 -0

Thus the Pirst integral already has the desired form, since the integrand
differs from zero only within the weke. In order to give the same form
to the second integral, one Introduces a hypothetical substitute flow
w'(y) in plene II which agrees with u, everywhere outside of the wake,

but differs from wu, within the weke by the fact that the total pressure
for u2' equals gye Thus

8, =D, + g u, (20.4)

Since the actual flow W, Uy satisfies the continulty equation the

‘flow volume across section IT for the hypothetical flow Uy s u2' is too

large. It shows a source essentlally at the location of the body which
has the strength

Q:hf(uet—ue)dy (20.5)

A source 1In a frictlonless parallel flow experiences a forward thrust

R=-pU,Q (20.6)

One now egain applies the momentum theorem according to equation (20.3)
for the hypothetical flow with the velocity Uy at the cross sectlon I

and the velocity u'2 at the cross sectlon II. Since gé = g, and the
resultant force, according to equation (20.6), equals R, one obtains

p
-PpT, Q=73 h\/ﬁ<%12 - u*2é>dy (20.7)

By subtraction of equation (20.7) from equation (20.3) there results

W+pUsQ=nh f(go-gz)dy+§f<u'22—u2'2)dy (20.8)
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or because of equations (20.5) and (20.6): )
= 2 y 2 2
R S I Ny S

One may now perform each of these integrations only across the wake, since

outelde of the wake u'2 = U, Due to u'22 — u22 ==(u'2- 2)(u'2 + u2)

a transformation gives the following formula:

R [ S A T

Betz! Formmla

In order to determine W according to this equation, one has to measure
in the test cross section behind the body the following values:

1l. Total pressure = (therewlth &, is the value of g5 outseide
of the wake).

2, Stetic pressure Poe

Furthermore, p = statlc pressure at infinity.

Hence one obtains all quantities required for the evaluation of
equation (20.9).

It is useful for the evaluation of wind tummel tests to introduce
dimensionless quantities. With F = ht as area of reference for the
drag:

2

_ 2
W—th'bEU

and hence from equation (20.9):

i

- g8 =71 g, — 7 =7 g, =D
CW:/\&, sad(%)t[voqz_\leqe VFO 2\ [%2 2_2(1(%)
(o] O

w q-o q‘O q‘O

(20.10)

o = p = 0, at the test cross sectlon one can
0

write thie equation, because g, = qgt

Tor the case in which p
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I
L‘“b
N
|
plngu
S—
fu
ctitd
|
c‘“ﬁ
S
1
o
[
+
.ol ®
S
[a?
cHed

(o} (o] (o]
g g
cw=2f —2<1- —?-)dl
q'O Q t
Yo Us y
[¢] =2f—-— — — 4 = (20'11)
W UO< Uo) T

This agrees with equation (9.41).* Thus in this case Betz! formula
changes, as was to be expected, Into the previous simple formulsa.

b. The Method of Jones

Later B. M, Jones (reference 85) indicated a similar method which
in 1ts derivation and final formmla 1s somewhat simpler than Betz! method.

Let cross section II (fig. 10l) (the test cross section) lie close
behind the body; there the static pressure Ps ig still Ppticeably

d1fferent from the static pressure Poe Let croes section I be located

so faxr behind the body that the statlc pressure there equals the undie—
turbed statlc pressure. Then there applies for cross sectlon I according
to equation (9.41)*

W=nhop [ (Uo - ul) ay, (20.12)

In order to relate the value of uy back to measurements at cross
section IT, continulty for a stream filament is first applied:

P ul dyl =P u2 dy2 (20'13)

* In chapter IX the totel drag of the body (both sides of the
plates) was designated by 2 W; here the entire drag equale W!
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Jones mekes the further assumptlon that the flow from cross section IT
to cross section I 1s wilithout loss, that is, that the total pressure ls
constant along each stream line from IT to I:

g, =8 (20.14)

First, according to equations (20.12) and (20.13):

W = hp u2<Uo - ul) &y, (20.15)
Furthermore:
P2 _ _ _
otz =8 =% with p_ =0 T
p__ 2 _ =
Pun2=
PE + 'u.2 32
/
and hence
U  [82 — P2, U |82 (20.17)
= = s — =\/2= .
U 9 Uo 9%

(20.18)
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Formula of Jones

Thus all quantities may be measured 1n cross section IT closs to
the body. This formulae 1s simpler for the evaluation than Betz! formula,
equation (20.10).

In the limit, when the static pressure in the test cross section
becomes Po = Pys this formula, of course, must also trensform into the
simple formula equation (20.11). One obtains for Pop =P, = O from
equation (20.18):

\’8 24 u, U
2 2 b 2 2 4
d/n q0 %, € Ub Ub b

This is in agreement with equation (9.41).

Fifteenth Lecture (March 16, 1942)
CHAPTER XXTI: ORIGIN OF TURBULENCE

a., General Remarks

In thie sectlon & short summary of the theory of the origin of
turbulence will be given. The experimental facts concerning laminar/
turbulent transition for the plpe flow and for the boundary layer on the
flat plate have been' discussed in chapter XIII. The position of the tran—
sition point 1s extremely importent for the drag problem, for instance
for the friction dreg of a wing, since the friction drag depends to a
great éxtent on the position of the transition point.

The so—called critical Reynolds number determinee transition. For
the pipe (ﬁd/v)crit = 2300, and for the boundary layer on the plate

(T, x/V) = 3 to 5 X 10°. However experimental investigatlons show
Q crit ’

the value of the critical Reynolds number 1s very dependent on the
initial disturbance. The value of Recrit is the higher the smaller the

initlal disturbance. For the pipe flow the magnitude of the initlal
disturbance 1s gilven by the shape of the inlet, for the plate flow by

the degree of turbulence of the oncoming flow. For the pipe, for instance,
a critical Reynolds number (ﬁd/v)crit = 40,000 can be attained with very
speclal precautionary measures. : -

Accordlng to today's conception regarding the origin of turbulence,
transition is a stablility phenomenon, The laminar flow in itself iz a

golutlon of the Navler—Stokes dlfferential equations up to arbitrarily
high Reynolds numbers. However, for large Re—numbers the laminar flow
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becomes unstaeble, in the sense that small chance disturbances (fluctu—
ations jin velocity) present in the flow increase with times and then alter
the entire character of the flow. Thls conception stems from Reynolds
(reference 101). Accordingly, 1t ought to be possible to obtain the
critical Reynolds number from a stability investigation of the laminar
flow. .

Theoretical efforts to substantiate these assumptions of Reynolds
mathematically reach rather far back. Besides Reynolds, Rayleigh
(reference 102) in .particular worked on the problem. These theoretical
attempts did not meet with success for a long time, that 1s, no instabillty
could be established in the investligeated lamlnasr flows. Only very
recently has success been attained, for certain cases, 1n the theoretical
calculation of & critical Reynolds number.

One assumes for the theoretical investigeations that upon the baslc
Plow which satisfies the Navier—Stokes differential equations a disturbance
motion is superimposed. One then investigates whether the disturbance
movement vanishes again under the influence of friction or whether it
increasges with time and thus leads to ever growlng deviations from the
basic flow. The following relations wlll be Intorduced for the plane
case:

basic Flows: U(x, v); V(x, ¥); P(x; ¥)
disturbance movement: u'(x, y); v'(x, ¥); pi(x, ¥) (21.1)
resultant movement: U+u'; V+vt; P+ p?

P, p' slgnify pressure. The investlgation of the stebility of such a
disturbed movement was carried out essentially according to two dlfferent
methods:

1. Calculation of the energy of the disturbance movement.

2, Calculation of the development of the dlsturbance movement with
time according to the method of small oscillations.

I am going to say only very little ebout the first method since it
was rather umsuccessful. The second method was conslderably more
successful and will therefore be treated in more detall later.

The first method was elgborated mainly by H. A. Lorenz
(reference 103). The followlng integral expression may be derived for
the energy balance. of the disturbance movement:

%%t/nmdv = pl/PMdV -u;/deV (21.2)
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In it E = % u’2 + v'2> slgnifies the kinetic energy of the disturbance

movement. The Integration 1s performed over & space which participates
in the movement of the Hgsic flow and at the boundarles of which the
veloclty equals zero. 5% slgnifies the substantial derivative. Thus

one finds on the left side of equation (21.2) the increase with time of
the energy of the disturbance movement. On the right eide,

'\
M=~ u'2a—U+ v'2§+ u'v*<g+g)
ox Sy oy x
- S (21.3)
ov! 3u')2
ox oy
/

The first integral slgnifies the energy transfer from the main to the
secondary movement, the second the dlssipation of the energy of the
secondary movement. If the right slde is greater than zero, the intensity
of the secondary movement Increases with time, and the basic flow 1s thus
unstable. An assumed disturbance movement wu', v' satiefles merely the
continulty equation, but no heed is pald to 1ts compatibllity with the
equatlons of motion. If one could prove that the right side 1s negative
for any erblirary disturbance movement ut, v? +this would serve as proof
of the stebility of the basic flow. On the other hand, the lnstability
would be proved as soon as the right side 1s positive for a possible
disturbence. Unfortunately general investlgations in this direction

are very difficult and have not led to much success. H. A. Lorenz
(reference 103) treated as an example the Coustte—flow (fig. 102), assuming
an elllptical vortex as & superimposed disturbance movement. He found for

U d
o - '
this case \ —— 1t = 288, whereas Couette's measurements for this case

gave the velue 1900. )

b. The Method of Smmll Oscillations

For the second method (method of small oscillations) the disturbance
movement 1s actually calculated, that is, its dependance on the spatial
coordlnates x, y and the time + 1s developed on the basis of the
hydrodynamic equations of motlon. We shall explain this method of small
osclllations In the case of a plane flow, In view of the applicatlons
of this method we shall immedlately assume a special baslc flow: +the
component U, namely, 1s to be dependent only on y and t and V= O,
Such basic flows had been previously called "layer flows". They exist
for instance In tunnel flow and pipe flow, approximately, however, also
in the boundary layer since here "the dependence of the velocity component
U on the longitudinel coordinate x 1s very much smaller than the
dependence on the transverse coordinate y. One now assumes a baslc flow
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Wy, 8); V=0; B(x, y) (21.4)

This basic, flow, by 1tself, then satisfies the Navier—Stokes equations,

thus :
-1

|
+
o+
Q/l\)
d

Yl HIY

"
<

o

> (21.5)

/

A disturbance movement which is also two—dimensional is superimposed
upon this baslc flow:

disturbance motion: u'(x,y,t); v'(x,y,t); p'(x,¥y,t) (21.6)
One then has ag ths
resultant motion: u=U+ u'; v=0+vt; p=P+p' (21.7)

This resultant motion 1s required to satisfy the Navier—Stokes differential
equations and one investigates whether the disturbance motion dies away

or increases with time. The selection of the initial values of the dis—
turbance motion is rather arbitrary, but it must of course satisfy the
continulty equation. The superimposed disturbances are assumed as Yemall®,
in the sense that all quadratic terms of the disturbance components are
neglected relative to the linear terms. According to whether the dis—
turbance motion fades away or increases with tims, the baslic flow is called
gtable or unstabls.

By insertion in the Navier—Stokes differential equations (3.18) ome
obtains, neglecting the quadratic terms in the disturbance veloclties

\\
W, o, gl 3, 1% 1 (0,
ot ot ax 9y Px P ox ay?
ov! Ly, 1, 13 |
Bt+U &+E$+S?-vAv' L(21.8)
dut  Javt
= 0
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If one now notes the fact that the basic flow by itself satisflies the
Navier—Stokes differential equations, equation (21.5), equation (21.8)
ie simplified to:

'j
Su' gyt U, 13 _
> + U = + ! - + 5 X vAut
ov' L g ' L L9 _ya g 3 (21.9)
ot & P dy
@._4.&:0
x oy )

The pertinent boundsry conditions are: Vanishing of the disturbance
components u' and v' on the bounding walls. From the system

equation (21.9) of three equations with three unknown quantities u?,

v', p' one may at first eliminate p! by differentiating the first
equation with respect to y and the sgevond with respect to x and then
subtracting the second from the first. This glves, with continulty taken
into consideratlons

\
3%ut 3%yt g 3y 3%yt
Sy T Vst 2 sV
3y &
>  (21.10)
. v<a3;= , Bur _ B3v'2'_ B3v')
xoy 3y wmdye A )

In addition to this there is the continuity equation (21.9). There are
now two equations with two unknown quantities wu', +v¢.

Form of the Disturbance Movement

For cases where the basic flow predominantly Fflows in one directilon
as for instance boundary—layer or pipe Fflow, the disturbance motion is

agsumed to be a wave progressing in the x—direction (= main flow direction),

the amplitude of which depends solely on y. The continuilty equation of
the disturbance motion may in general be integrated by a disturbance
function for which the following expression may be used:
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. ) ¥ (x,5,t) = qn(y)em(x_Ct) (21.11)*
.Where:
"A. = 2n/a the wave length of the disturbance (o = real)
c=c,+ i 4y
c,. = veloclity of wave propagation
¢, = amplification ﬁgqtor; c; < 0: stable; cy > 0: unstable
o(y) = @r(y) + 1 @i(y) = amplitude of the distufbanc? movement

From equation (21.11) one obtains for the components of the disturbance
movement '

~
- ut = g—";’: - q)' (y)eia‘(x_c-b)

> (21.13)
oo 3 _ iam(y)eia(xFCt)

/

By substitution into equation (21.10) one obtalns the following differ—
ential equation for the disturbance amplitude o:

icr.<Uq)"— " _ oUt 2'_ 2)_ (nn_ 2:: h-)
Q" —qU" + acp —Tx @) = V(" — 20 0" + a @

or

(U _ c)(q:" _ CLECP) - T = ——;LT\L (cp"“ _ 2(1.2Cp" + a,l‘cp) (El.l)-l-)

One introduces dimensionless quantities Into thilis equation by referring
all velocities to the maximum velocity Uﬁ of the basic flow (that is

for the frictlon layer the potential flow outside of ths boundary layer
and all lengths to a suiteble reference length ) (for instance, for

‘8

*The convenlent complex formulatlion is used here. The real part of
the flow function, which alone has physical significance, is therefore

Re(V¥) = ecit .. cos [m (x - crt)j[— ¢, sin [-05 (x - crt)] (21.12)
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the boundery layer flow, the boundary layer thickness). Furthermore,
differentiation with respect to the dimensionless quantity y/ﬁ will

be designated by a prime mark (1),

One then obtalns from equation (21.14)

(U - c)(o" - o) — U"p = — % (9" — 2a20" + alg) (21.15)

DISTURBANCE DIFFERENTTAL. EQUATION

where R = E%E. This is the disturbasnce differential equation for the

amplitude @ of the disturbance movement, The boundary conditions are,
for instance, for & boundery layer flow

I
o

0 (wall): u' =v' =0: ¢ = ot

o
i

(21.16)

i
o

y=o : u'=v'=0: ¢ =0

The stability Investigation 1s an eigenvalue problem of this differential
equation for the disturbance amplitude ¢(y) in the following sense: A4
basic flow U(y) 1s prescribed which satlsfies the Navier—Stokes differ—
entlal equatlions. Also prescribed is the Reynolds number R of the basic
flow and the reciprocal wave length o = En/x of the disturbance movement.
From the differential equation (21.15) with the boundary conditions
equation (21.16) the eigenvalue c = ¢y + 1 cy is to be determined. The
slgn of the imaginasry part of this characteristic valus determines the
stability of the basic flow. For ¢y < O the particular flow (U, R)

is, for the particular disturbance a, stable; for ¢4 > 0, unstable.
The case ¢4 = 0 glves the neutrally stable disturbances. One can
represent the result of the stability calculation for an assumed basic
flow U(y) in an o, R-plane in such.a manner that a pair of values

¢y, ©641 Dbelongs to each point of the «, R-plane. In particular the
curve c¢y = O 1in the o, R-plane separates the stable from the unstable
disturbances. It i1s called the neutral stability curve (fig. 103). In
view of the test results one expecte only stable disturbances to be present
at amall Reynolds numbers for all wave lengths o, unstable dlsturbances,

however, for at least a few o at large Reynolds numbersd. " The tangent
to the neutral stability curve parallel to the o~axis gives the critical

Reynolds numbser of the respcctive basic flow (fig. 103).
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Methods of Solution and General Properties of the Disturbance

Differential Equation

Since the stablllity limit (ci = 0) is expected to occur at large
Reynolds numbers, it suggests 1tself to suppress the friction terms in
the general dlsturbance differentlal equation and to obtaln approximate
solutions from the so—called frictlonless disturbance differential
equation which reads

(U =c) (¢" = ap) —T" = 0 (21.17)

Only two of the four boundary conditionssequation (21.16),0f the complete
disturbance differential equation can now be satisfied since the friction—
less disturbance differential equation is of the second order. The
remaining boundary conditlons are:

y=0: v =0,9=0; y=c: v¢I=0: ¢=0 (21.18)

The cancellation of the friction terms in the disturbance differential
equation 18 very serious, because the order of the differential equation
is thereby lowered from 4 to 2 and thus important properties of the
general solution of the disturbance differential equation of the fourth
order possibly are lost. (Compare the previous conslderations in
chapter IV concerning the transition from the Navier-Stokes differential
equations to potential flow.)

An importent special solution of equation (21.17) is the one for
8 constant basic flow, U = constant, whlch is needed for Instance for
the stability investigation of a boundery leyer flow as a Joining
solution for an outer potential flow. One obtains from equation (21.17)
for
U = constant: @ = o

However, due to the boundary conditions for @ at y = =, the only
permlesible solutlon 1is

p=627 (21.19)

We shall prove at first two general theorems of Raylelgh on the
neutral and unstable oscillations of the frictionless disturbance
differential equation.
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Theorem I: The wave velocity c,. for a wveloclty profile with

" (3) <0 must, for & neutral oscillation (c =0, ¢ =c,), equal
the basic velocity at a point so that there exis‘bs within the flow a
voint U —-c¢c = 0.

Proof: (indirect) One mekes the assumption ¢ > U, (= maximum

velocity of the baslic flow). One then forms from eq_ua.tion (21.17) the
following differential expressions'

1%

1" 2
L(p) =" —a @ — =0 (21.20a.)
U-c¢c
and
L(p) = B" — &5 — S U_?5= 0 (21.20b)
—-c

L(p) slgnifies the expression cbtained from L(p), 1if one inserts
everywhere the conjugate complex.quantitles. Because of the boundary
conditions

One forms further the expression oL(¢p) + ¢ L(p) and integrates
1t between the limits y = 0 and y = ». The integrals may be teken up to
y = o, gince for large y, @ ~ e~%. Because of equa.tion (21.20a, b)

Jy; must then be

00

3 = [EL@) + 9 L(9) ]dy =0 (21.21)

y=0

After insertion of equation (21.20a and b) results, because ¢ = c,

—_ - — 1 —
Jl=’ <q>q>“+q>"q>—2a2q>q>—2 g w)dy=
U-—c¢c
y=0

or
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co (-]

Jl=[®'+6'@T—2 PrPtdy — 2 (m2+ U")qaq‘ady=o
lo}

O o

The first term vanishes due to the boundery conditioms, hence there
remains

I = =2 o15! +<a.2 = U" )qaq? dy = 0 (21.22)

y=o

o'¢' as well as ¢P are positive throughout; if T" S0 and ¢ > U_»

U"/0 —c 20 and hence the integrand in equation (21.22) is positive
throughout. Thus the integral camnot becomse zero. The assumption made
at the beginning c¢ > Um therefore leads to a contradiction.

¥or basic flows with T" < 0, as for instance boundary-layer flows
in e pressure drop, the wave propagation veloclty therefore must be smaller
then TUp for neutral disturbances. Hence a point U —c =0 exists

within the flow. This point 1s a singular point of the frictionless
disturbance differential equation (21.17) and plays as such a special role
for the investigation of this dlfferential equation. The wall distance ¥y
at which U—c¢c =0 is called y = g = critical layer.

This Pilrst Raylelgh theorem proved above &ppllies — as shall be noted
here without proof — in the same manner tc flows with TU"™ > 0.

Sixteenth Lecture (March 23, 1942)

Theorem II: A necessary condlitlon for the presence of amplified
oscillations (cy >0) 1s the presence of an inflection point within the

basic flow (T" = 0).

Proof: (indirect) According to assumption, cy # 0; thus

U—c #0 for all y. With L{(p) and IL(p) one forms, according to
equation (21.20a) and (21.20b), a similar expression as before. This
latter, integrated from y =0 %o y = », mst agaln give O, thus

0

Jp = [61-@) - @ﬁ]dy =0 ' (21.23)

y=o
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By substitution according to equation (21.20a and b) results with
t=c,~—1c
' r b

P~} =1 = o o
J., = - - - =0
2 P PP W(U-—c U—E) dy
y=0
or
— " —
J2=[q>q>' —@| —2to| ———qFdy=0 (21.24)
0 2
lU - c'

The first term egaln vanishes because of the boundary condltions. Since ¢F
is positive throughout and iU —c| # 0, the integral can only vanish if
U™ changes 1ts slgn, that is, an inflection point of the velocity profile
U" = 0 must be present within the flow. It has, therefore, been proved:
In order to make the presence of amplified oscillations possible, an
inflectlion point must exdist In the veloclty profile of the basic flow, or,
expressed briefly, such osclllatlions are possible only for inflection

point profiles. .

Later on Tollmien (reference 110) proved that the presence of an
inflection point 18 not only a necessary but also a suffliclient condition
for the existence of amplified oscillations. Hence the following simple
statement 1s valid: Inflectlon polnt profiles are unstable, It must he
mentioned that all these conslderations apply in the limiting case R-—>w
since the proofs were obtalned from the frilctionless disturbance differ—
ential equation.

We know from our previous consideratlions about the laminar boundary
layer that inflection polnt proflles always exist in the region of pressure
rise, whereas in the pressure drop reglon the boundary leyer profiles are
always without an inflection point, (fig. 104). Hence we recognize that
the pressure rise or pressure drop is of declsive significance for the
gtability of a boundary layer flow.

The converse of the theorem Just set up is also valld, namely, that
for R—>ew veloclity proflles without inflection point are always stable.
From this, however,>one must not conclude that profiles without inflection
point are stable for all Reynolds numbers. A closer lnvestigation for
Reynolds numbers of finite magnitude shows that there profiles without an
inflection pbint also become unsteble. One is faced with the peculiar
fact that the transition from Re = « to Re—number of finite magnitude,
that 1s,the addition of a emall viscosity to a frictionless flow, has a
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destablilizing effect, whereas one intuitively expects the opposite. As
later conslderations wlll show in more detail, the typical difference
between the neutral stabllity curves of a basic flow with and without
inflection polnt appears as represented 1n figure 105. For the wveloclty
profile without an inflection point the lower and the upper branch of the
neutral curve have, for R—>w, the same asymptote o = 0. For +the
velocity profile with inflection polnt the lower and upper branch of the
neutral curve have, for R—>w, different asymptotes so that for R =w
a certain wave length reglon of unsteble disturbances existe. Furthermore
the critical Reynolds number is smaller for veloclity profiles with an
inflection polnt than for those without an Inflection point.

Hence it is to be expected for very large Re-number, to a first,
very rough approximation, that the transition point In the boundary layer
of a body lies at the pressure minimum. Figure 106 shows schematically
the pressure distribution. for a rather strongly cambered wing profile at
a small 1ift coefficient. The translitlon point would be expected in this
case Jjust behind the nose on the pressure slde, slightly more toward the
rear on the suction side.

Solution of the Disturbance Differential Equation

In order to perform the actual ¢talculation for the boundary—value
problem Just formulated, one needs at flrst & fundemental system
Prs o o o o . @y of the gemeral disturbance differential equation (21.15).

One imagines the basic flow U(y) glven in the form of a power seriles
development:

1)
U(y)=U(')y+Ly2+.... (21.24)
2'

If one introduces this expression into equation (21.15) and then wants
to construct & solution from the complete dlfferential equation which
satisfies the boundery conditions (equation (21.16)), one encounters
extreme difficulties of calculation, due to the two conditions to be
satisfied for y = . In order to obtain any solution at all, one has
to meke various simplifications. The simplifications concern:

1. The basic flow: Instead of the general Taylor—series
equation (21.24) one takes only a few terms, thus for instance a linear
or a quadratic velocity distrlbution,

2, The disturbance differential equation: For calculation of the
particular solutions the disturbance differential equation 1s considerably
simplified.

Regarding 1, it should be noted that linear veloclty distributions
frequently have been investigated with respect to stability, as for
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instance the Couette flow according to figure 102 or a polygonal approxi—
mation for curved velocity profilesg according to figure 107. This facili—
tates the calculation dus to the fact that then the singular point

U-~c =0 1a avolded 1n the frictionless disturbance differential
equation (21.17) for neutral disturbances. However, all investigations
with linear velocity distributione (references 10k, 105, 106) were unsuc—
cessful with the frictionless as well as with the complete differential
equation. No critical Reynolde number resulted. When one later took

for a basls parabolic profiles, these negative results became intelligible.
One must, therefore, take at least a parabolic distribution as a basls

for the basic flow.

Regarding 2, 1t should be neted that one can provide approximate
solutions for the solutions of the complete differential equation (21.15)
from the frictionless differential equation (21.17) since the solutions
are required only for large Re—number R. The frictlionless differential
equation however can yield no more than two partliculer solutions; two
more have to be calculated, taking the largest friction terms in
equation (21.15) into consideration.

The course of the calculation for the particular solutions will be
briefly indicated. One limlts oneself to neutrael dlsturbances, assumes
a parabolic velocity distribution, and imagines the latter developed in
the nelghborhood of the critical layer.

y = IK: U—c=T- cr =0
" 2
Toc=0 (v -5 )+ —(v-7 (21.25)
K K 2 K

The first pair of solutions ¢,, @, 1s then obtained from the frictlon—

less disturbance differential equation (21.17) by substitution of
equation (21.25). According to known theorems about linear differential
equations with a singular point a linearly independent pair of solutions
has the form - -

Py =<y - yK) P, (y - yK)

- (21.26)

K
¢, = Pz(y - yK) + T (y - yK) Zog.(y - yK) Pl<y YK)

Pl and P2 are power series wlth a constant term different from zero.

The particular solution @2 is especlally Interesting.
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? -
cp2——>°° for y—yK

That is, the u'—component of the disturbarce veloclty becomes infinitely
large in the critical layer. This can also be understood directly from
the frictionless disturbance differential equation (21.17). According
to equation (21.17)

"
U-c

Q" — GECP =

P

or

" ~ s <p|~1og(y—yK), ifU"K#O

This singular behavior of the solution ®o 1in the critical layer stems

of course from neglecting the friction. The frictionless differential
equation here no longer gives a serviceasble approximation. In the
neighborhood of the critical layer the friction must be taken into
congideration. Moreover, there 1s another inconvenience connected with
the @p. For fulfillment of the boundary conditions one requires the

solutlon for y — yp >0 as well as for y — y, < 0. However, for o,
K K 2

it 18 at firset undetermined what branch of the logarithm should be chosen
&t transition from y —yr >0 to y — yg < 0. This also can be clarified

only if in the nelghborhood of y — Jgs 8at least, the large friction terms

of the complete differential equation (21.15) are teken into consideration.
The detalls of the calculation will not be discussed here. The calcu—
lation leads, as Tollmien (reference 109) has shown, to the result that
one obtains for the solutlon ¢o & so—called trensition—substitution in

the critical layer which appears as follows:

u"
¥ -y >0: ¢2=P2(y-—yK)+E€(y—yK)Ply—yK)los (7 - %)

T - 3g <0t 9 =Ba(y—yK)+g,—'§ (7 = vx) By (v — 3g) 208 {Iy—yKl ~ ix

(21.27) 7

If one writes, according to this, the complete u'—component, then in the
neighborhood of y — gt
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Ull A

K
— H 1t = e o o e o — - —
T =g > 0: u + = log (y xK) cos (ax — Bt)

K

U"
KX

<O0;: u' =, 4 o ¢ o« + o log 'y ~3 | cos (ax — Bt) P (21.28)
® K
U"
+ 1 —= gin (ax - Bt)
U'K
J

One obtainsg therefore in the critical layer a phase dlscontinuity for the
ut—component. Thieg 1s retained even iIn going to the limit, R-—>w. It

is lost, however, if one neglects the curvature of the basic flow TU"

or 1f one operates only with the frictionless differential equation. This
phase discontinulty is very significant for the development of the motion.
The loss of the phase dlscontinulty 1s the reason that stabillty investi-—-
getions neglecting the curvature U" or operating only with the frictionless
differential equation remaln unsuccessful.

With this friction correction in the critical layer the pair of
golutions ml, ¢2 is sufficlently determined. By teking the frictlon

terms in equation (21.15) into consideration, one then obtains & second
palr of solutions ¢3, Py, which can be represented by Hankel and Bessel

functions. Of these two solutlions ¢u tends very strongly towards

infinity and ie therefore not used because of the boundery conditions,
equation (21.16). ¢3 tends, for large y, towards zero.

The Boundery Value Problem

The general solution as a linear combination of the four particular
solutions is:

¢ = Cl¢l + 02¢2 + C3¢3 + Ch¢4 (21.29)

Let us consider in particular the case where a boundary layer profile is
investigated with respect to stebility. For this case the boundary value
problem can be somewhat simplified. The previous considerations showed
that in the disturbance differential equation the friction essentlally
needs to be taken into consideration only in the neighborhood of the
critical layer; also, of course, at the wall, because of non—sliip. The
critical layer 1s always rather close to the wall; hence for y >3,
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where U = U, = constant, * one may use the frictionless solution which is

according to equation (21.19) = 6~ W, Thus the condition that the
solution for y =8 Jolns the solution for U = constant is

cp‘l + o q)s =9 =0 (21-30)

5] o]

This mixed boundary condition is therefore to be set up on the outer edge.
Furthermore, the particular solution Py, is a priori eliminated in the

general solution (equation (21.29)}), since 1t grows, for positive y — ¥g,
beyond all limits; thus Ch = 0. Hence there remains for the boundary
value according to equation (21.16)

-\
=0
1 P10 ¥ Op P * C3 95,
C. of ' t =0
1Pl * O, + 0PN 5 (21.31)
1915 * CoPpg ¥ C3035 = ©
J

A further simplification takes place bsecause of the fact that because of
the rapld fading away of the solutlion Q3 on the outer edge y = &, the

solution ¢18 already practically equals zero. In the third equation of
equationh (21.31) QBS
problem actually to be solved 1s, therefors,

may therefore be cancelled. The boundary value

P

lo ¢

20 q)30

CP'lo CP'20 CP'20 =0 (21.32)

%16 %25 ©

This determinant gives the eigenvalue problem indicated above, which
requires — as has been said before — the solution of the following problem:
Given .
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1. basic flow U(y)

2, Reynolds number Re = U b/v

3. wave length of the disturbance a = 2x/A

One seeks from equation (21.32) the pertinent complex elgenvalue

C =c, + 1 Cy Therelin Ch glves the veloclty of wave propagation and

cy the amplification or damping

Equation (21,32) may formally be written in the form:

", ....)=0 (21.33)

F(ay, ¢ o’ o

c R; Ut

r’ 1?2

where equation (21.33) signifies a complex equation, hence is equlvelent
to two real equatlons

|
O

le;, C. ci, R; U'o, U"o, . e .)

(21.34)
f2<or,, Cps Cys R; U'o, U"o, . e )

il
O

If one imagines for instence ¢, eliminated from these two equatlons,
one obtains one equetion between a, R, Cy:

s1(% 010 B Ulgy Uy - - )= (21.35)

From this equation c¢3 can be calculated as a function of o and R.
The constants U's, U",, . . . are parameters of the basic flow. Thus,

if equation (21.35) is assumed solved with respect to c4,
oy = 82<q,’ Ry U'y, U",, . . -) (21.36)

Finally one obtaing from it, for the neutral disturbances cy = 0, a
curve in the «, R-plane, given by the squation

g2<§, R; U, U, . . .) (21.37)
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This is the sought for neutral stability curve (compare figure 103), which
separates the unstable from the steble disturbances and also yields
the theoretical stability limit, that is, the critical Reynolds number

Rebrit’

The performance of the calculation, here only indicated, is analyt—
lcally not possible since the quentities a, Cos R enter into the

determinant, equation (21.32), in a very complicated manner. One has
therefore to resort to numerical and graphical methods. The critical
Reynolds number 1s very largely dependent on the form of the velocity
profile of the basic flow, in particular on whether the velocity profile
of the basic flow has an inflection point, thus on U"(y).

The critical Reynolds number Pound from such a calculation gives
exactly the boundary between stebility and instebility, hence the first
occurrence of a neutrally steble disturbance. In comparison with the
tranglition point of test results it 1s therefore to be expected that the
experimental transition point appears only for larger Reynolds numbers
where an amplification of ‘the unstable disturbance has already occurred.

¢. Results

A few resulis of such stability calculatlions wlll be glven. The
completely calculated example concerns the boundery layer on the flat
plate in longltudinal flow with the laminar velocity proflle according
to Blasius (compare chapter IXa). In figure 108 the streamline pattern
of thls plate boundary layer with the superimposed disturbance movement
is glven for a special neutral disturbance. Figure 109 shows, for the
same neutral disturbance, the amplitude distribution and the energy
balence. Since the disturbance in gquestion is neutral, the energy
transfer from the main to the secondary movement 1ls of exactly the same
magnitude as the dlssipation of the energy of the secondary movement.
Figure 110 shows the neutral—stabllity curve as result of the stability
celculation according to which the critlical Reynolds number ls referred
to the displacement thickness 8% of the boundary layer
(Uﬁ§*/v)crit = 575. The connection between displacement thickness &%

‘and length of rsn x 1s for the laminar boundary layer according to
equation (9.21)

Thus a critical Reynolds number formed wlth the length of run x
(/) gpgg = o1 X 10° corresponde to the critical Re-number

(Uﬁ§*/v) 1t = 575. The critical number for thle case observed in tests
cr : :
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was 3 to 5><105.- It was explalned above that it must be larger than
the theoretical number, Furthermore, figure 110 shows that at the
stablility limit the unstable wave lengths are of the order of magnltude
A = 55. The unstahle disturbances thus have rather long wave lengths.

Thig calculation, carried out by Tollmien (reference 109) for the
flow without pressure gradient was later applied by Schlichting
(reference 11k, 115) to boundary layer flows with pressure drop and
pressure rise. The boundary layer profiles with pressure rise and
pressure drop can be represented in a manner appropriate for the stability
calculation as a one—parameter famlily with the form parameter XP L

according to Pohlhausen's approximate calculation. Qne then obtains for
each.profile of this family a neutral—stebility curve as indicated in
figure 111. Hence the critical Reynolds number (U 8%/v) .y 1is &

function of the form parameter Ap ) according to figure 112, In
retarded flow (LP L <0) the critical Re-number is smeller than for the
plate flow (XPM = 0), for accelerated flow (XPh > 0) it is larger.

With this result of a unlversal stebllity calculation the position of the
theoretical transition point may be determined conveniently for an
arbitrary body shepe (plene problem) in the following manner: At first,
one has to calculate for this body the potential flow along the contour,
furthermore one has to carry out, with this potentlial flow, a boundary
layer calculation according to the Pohlhausen method. This calculation
ylelds the displacement thickness and the form parameter Apy, @8

functions of the arc length along the contour, in the form

Ut
5% o _ =
< (v = fl(s) and  Ap, = fz(s)

Since in general there exists, accelerated flow at the front of the body
and retarded flow at the rear XPH decreases from the front toward the

rear. By means of the universal stabllity calculation according to
figure 112 one may determine & critical Reynolds number (Uﬁ§*/‘acrit

for each point of the contour. The position of the tramnsition point
for a prescribed Re—number Ubt/v 1s then gliven by the condltion

| UB*  [Ugd*
8= Bopit? v Vv Jerit

Flgure 113 shows, for the example of an elliptic cylinder*, how to find
the transition point. The curve (Uﬁ§*/v)cr1t decreases from the front

*¥The boundary layer calculation for this elliptic cylinder weas given
in flgure 52. _
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toward the rear; the curve U, S*/y for a fixed Re—number U_t/v increases

from the front toward the rear. The intersection of the two curves gives
the theoretical transition point for the respective Re-number Ubt/v.

By determining this polnt of intersection.for various Ubt/v one obtains
the transition point as a functlon of Ubt/\h The result is represented

in figure 114. The transition point travels with increasing Re-number
from the rear toward the front; however, the travel 1s considersbly
smeller than for the plate in longitudinal flow which is represented in
figure 114 for comparison. Finally figure 115 shows the result of such a
stability calculation for four different elliptic cylinders in flow
parallel to the major axis. The shifting of the transition point with
the Re—number increases wlth the slendsrness of the cylinder. For the
circular cylinder the shifting is very slight, which 1s caused by the
strongly marked vélocity maximum, As a last result, flgure 116 shows the
travel with Re—number of the transltion point on a wing profile for various
1ift coefficlients. The profile in guestion is a symmetrical Joukowsky
profile with 11ft coefficlents cy = O to 1. With increasing angle of

attack the transition point travels, for fixed Re—number toward the front
on the suction side,toward the rear on the pressure side. (compare the
velocity distirbutions for this profile, given in figure 54.) One recog—
nizes thet the shift of the transition polnt with the 1lift coefficient

is essentlally determined by the shift of the velocity maximum.

The last examples have shown that i1t 1s possible to calculate
beforehand ths poslition of the transition point as a function of the
Re—umber and the 11ft coefficlent for the plane problem of an arbitrary
body immersed in & flow (particularly a wing). Regarding the comparison
with test results 1t wes determined that the experimental transition
point always lles somewhat further downstream than the theoretlcal tran—
sitlion point. The reason is that between the theoretical and the experi—
mental transition points lies the reglon of amplification of the unstable
disturbances. This amplification aleo can be calculated on principle
according to methods simllar to those previcusly described. (Compare
Schlichting (reference 112) where this was done for the speclal case of
the plate in longitudinal flow.) Presumably one can obtain a still closer
connection between the theoretical instability point and the experimsntal
transition point by applylng such calculations to the accelerated and
retarded flow.

CHAPTER XXII. CONCERNING THE CALCULATION OF THE TURBULENT FRICTION
LAYER ACCORDING TO THE METHOD OF GRUSCHWITZ (REFERENCE 78)
a. Integration of the Differential Equation of the
Turbulent Boundary Layer

In order to integrate the system of equations (18.16), one
first introduces dimensionless variebles. One refers the lengths to the
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wing chord +t and the veloclty to the free stream velocity Uy, ‘thus:

U \2
- = t* = <U—o> n (22.1)

Hence the system of equations (equation (18.16)) may be written:

ok

=x*_; %="3*;

‘\
2
&x .o, 0089k =~ g = 0.00461 <—Il> L
U, ) 9%
U , (22.2)
U ‘1<U- '
3%, o (14 B)gx 22 - s
/

Flrst, the second equation 1g solved with constant values for To/§U2
end H, namely

= 0.002; H = 1.5

The Piret approximation 61*(1*) obtained from that 1s then substituted

in the first dlfferentlal equation. From the latter one cbtains a first
approximation €.*(x*) and from that, according to equation (22.1),
nl(x*). With nl(x*) one determines according to figure 92 the course

of H(n) eand corrects S according to equation (18.15). Then one ~

obtains from the second dlfferentiel .equation a second approximation
ae*(q), etc.

. For the solution of the differentlial equations one uses the lsocline
method which can be applied for the present case, according to Czuber,
in the following manmner: Both differentlal equations have the form:

%xz + £(x)y = g(x) (22.3)

Ag can be easily shown, this differential equation heas the property that
all line slements on a straight line x = constant radiate from one point.
The coordinates of this point (= pole) are:
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E o= x4 — x=§%)l (22.4)

Thus one has only to calculate a sufficient number of these poles and
- can then easlly draw the integrel curve.

Figure 93 indlcates the result of such a calculation Pfor the profile
J 015; ¢y = O. The calculation of the lamlnar boundary layer for the
same profile was performed in chapter XIT, figure 49, table 6.

Initlal values: The transition point was placed somewhat arbitrarily

at the velocity maximum of the potential flow (x/t = 0.141). It was
agsumed that:

For the laminar boundary layer was found:

X &% Uo.b 6
: V5 = 1.6 ( )
- Hence there results, with &%/3 = 2.55;

X _ o.1h1; (—E) = 0,611 X 103 (table 8)
t o -

The corresponding n — value wes assumsd to be
1 = 0.1 (teble 8)

Calculation to the second approximation suffices. The result 1s compiled
in teble 8 end figure 93. A turbulent separation point does not exist
since 1 remains below 0.8, From the variation of the shearing

stress To along the wing chord the drag coefficient of the surface

friction may be determined:
- +

W=25Do T, dx (x = measured along chord)
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o 2
or cw=W/2'b t 5 Uo
- X
Cy = ___2.(-1% (22_5)

The evaluation of the Integral glves

b. Connection Between the Form Parameters n and H = 3/6%
of the Turbulent Boundary Lseyer
According to Pretsch (reference 80) one may also represent analyti-
cally the relation between the form parameters n = 1 — (ud/U)2 and

H = 5%/ which was found empirically by Gruschwitz, compare figure 92.
A power law 1g set up for the veloclty distribution, of the form:

2 =<%)n =z (22.6)

with n=21/6, 1/7, 1/8 . . . , according to the experiments so far.
Hence results: :

1 1
B* u n n
-3 @_I-I)dg'= (l-z)dz=n+l (22.7)
y/8=0 0
Furthermore: -
1 1 B
g sy _2)aZo A(G-d)
5 = T < U) d 5 z 1 z dz
y /o= 0 (22.8)
l -
= n 211) = 1 -— 1 = n
(z 2 = T Tome 1 (n+ 1)(am+ 1)
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From equations (22.7) and (22.8) follows:

*
H=5—=2n+-l
3
or
H~1
n= 22-
- (22.9)
From equation (22.8) follows further
3 _ H—-1
5= EET (22.10)

The Gruschwitz form parameter 1n 1s defined according to equation (18.2)

by:
u
9 \2
=] = —
k <U> ,

With equation (22.6) 1 becomes:

n=1 _@)2‘1 (22.11)

Substitution of equation (22.10) into (22.11) gives:

g1 EL
n=1- ﬁﬁ} (22.12)

The connection between H and 17 calculated according to this equation
ig given in the following teble and is also plotted in figure 92. The
curve calculated according to equation (22.12) almost coincides with the
curve found empirically by Gruschwlitz.
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PABLE VII. — THE IRAG LAW OF THE SMOOTH PLATE

NACA TM No. 1218

op = Q:0%% Ro = o2
Re/? v
_ 0,07k _ 1700
£ '.Ro]'/5 Re B
. = _QMZ_s.g _
(log Re)
e o, = — 0455 1790
(1og Re)2'38  Re
oI o, = 0-427
(— 0407 + 1og Re)2%*
1 Ia I IIe Ire
Ro = E‘:‘i op x 103 op X 103 cp X 103 op X 103 cp X 103
100 7.50 7.13 7.63
2 x 100 6.43 6.12 6.50
3 x 10° 5.93 5.62 5.85
I x 100 5.60 5.33 5.50
5 x 10° 5.37 5.06 5.23
6 x 10° 5.18 2.35 k.92 2.17 5.06
8 x 10° 4.88 2.76 k.62 2.50 LT
106 h.67 2.97 L.46 2.76 k.51
2 X 1 k.07 3.22 3.96 3.11 3.95
3 x 168 3.7 3.17 3.67 3.10 3.68
y x 105 3.5 3.11 3.50 3.07 3.%0
5 X 106 3.38 3.0h 3.4o0 3.06 3.33
& x 106 3.26 2.8 3.28 3.00 3.21
8 x 105 3.08 2.87 3.09 2.88 3.07
207 2.54 2.77 2.99 2.82 2.9%
2 x 107 2.56 2.47 2.67 2.58 2.62
5 x 107 2.13 2.16 2.38 .35 2.26
108 1.8 1.83 2,14 2.12 2.03
2x J.o8 1.93 1.92 1.87
5 x 108 1.70 1.70 1.61
10° 156 1.56 147
2 x 10° 1.43 1.43 1.33
5 x 109 L 130 130 1.19
10%° 5 L2 - 1.20 1.10
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PROFILE T 015;

Cp =0}

COMPARE FIGURE 93.

TR THE SAME PROFTLE; COMPARE FIGURE 49 AND TABLE 6, )

(LAMINAR BOUNDARY LAYER

I. Apprarimaticn II. Approrimation
S t'% I-;E; g H= % -:U—‘;_ (%)1103 S*l* n | E -:;%— (%)2103 QI n, 95103 205103
0.141 {1.27TL| © 1.5 f0.002) 0.611 |o0.162 0.1 [1.0L|0.00237| 0.611 [0.162]| 0.1 | 0.617 ;.66
0.173 | 1.267 | —0.215 0.67 | 0.ho7|0.254 [1.35 | 0.00232( 0.70 | o0.407| 0.254|.0.805 | 7.k
0.235 | 1.2%5 | —0.398 0.8% | 0.636)0.410 }1.25) 0,00224 | 0.87 | 0.630| 0.406] 1,09 6.64
0.305 | 1.212 | -0.k82 1,05 | 0.Ti2|0.485 [ 1.37( 0.00201] 1,10 | 0.704] 0.478] 1.52 6.21
0.380|1.178 | ~0.498 131 | 0.726 | 0.525 [1.41] 0,00200| 1.30 | 0.7e0} 0.521] 1.97 5.53
0.461 | 1,136 | ~0.500 1.63 | 0.T13(0.555 | 1.45 0.00191] 1.7% |0.T20] 0.553] 2.52 k.01
0.546 | 1.095 | 0,500 2.01 | 0.689|0.575 | 1.48] 0.00283 | 2.17 |0.686| 0.574| 3.20 .38
0.631 | 1.053 | ~0.4k88 2.45 |.0.662|0.596 | 1.%9 | 0.00076| 2.65 |0.662] 0.596| 3.95 3.01
0,713 | 1.0Lk | -0.5TL 2.96 {0.635|0.619 | 1.50| 0.00165 | 3.18 | 0.635| 0.619]| %.77 347
0.791 | 0.97T | —0.455 3.50 | 0.611]0.6423.55|0,00065| 3.75 |0.611| 0.642| 5.81 3.1%
0.861 | 0.945 | -0.431 4,07 |0.591|0.664 [1.58| 0.00160| ®.33 |0.593| 0.663| 6.84 2.85
0.919 | 0.917 | -0.427 k.59 | 0.574 | 0,683 {1.61| 0,00056 | %.86 | 0.5TT| 0.687| 7.83 2.62
0.96% | 0.899 | -0.430 5.03 | 0.562|0.695|1.64]0.00053| 5.28 | 0.565| 0.699| 8.66 .47
0.990 | 0.880 | -0.k21 5.50 0.555 | 0,704 | 1.65} 0.00152 | 5.60 |[0.558| 0.708| 9.25 2,40
1,000 , 0.884 | -0.421 Vv |V 5.51 | 0.552|0.707 [ 1.65] 0,00051 | 5.72 | 0.557( 0.715] 9.4k 2.36

¢y = 0.0090
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Figure 71.- Laminar and turbulent velocity distribution
in pipe.
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Figure 72.- Fluctuation with time of the velocity of
turbulent flow at a fixed position.
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Figure 73.- Drag and drag coefficient of a sphere.
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Figure 74.- Flow around g sphere; subcritical
and supercritical (schematic).
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Figure 75.- Laminar and turbulent boundary layer on a flat plate in
longitudinal flow.
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Figure 76.- Transfer of momentum by the
turbulent fluctuation velocity. :
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Figure 77.~ Explanation of the mixing length.
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Figure 79.~ Mixing length distribution in the smooth pipe.

o1t

QTST 'ON KI VOVN




NACA TM No. 1218 111

/4§
/3;
12
il
/0
9t
log
L &75 /09 7 O Smooth
7 ® -,:-‘- = 507
o n =252

) o) = /26

S K @ " = 60
\ﬂ'lx * I+ © = J06

§Q ii&wﬁ% ‘| o = /50
4__ —

F N

~
3
2 N
/
RO SN

L L

0 0/ @2 03 04 45 a6 47 48 Q9 10

Figure 80.- Universal velocity distribution law for smooth and rough pipes.
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Figure 82.- Resistance law of the rough pipe.

gTeT °*ON WL VOVH

E




8
1
r ! 2lagler?y
&0 o, % L~
t 1

R T 7 R T S T

Figure 83.~ Resistance law of the rough pipe for fully developed
roughness flow.
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Figure 84.- The roughness function B as a function of v kg /v.
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Figure 85.- Measurement of the drag of an arbitrary roughness.
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Figure 86.- Calculation of the turbulent plate drag.
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Figure 88,- The drag law of the smooth plate; comparison with measuremsnis.
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Figure 90.- Drag of the circular cylinder for various relative roughnesses.
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Figure 91.- Velocity profiles in the turbulent friction layer with pressure
decrease and pressure increase (according to Gruschwitz ['788).
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Figure 93.- Result of the calculation of the turbulent friction layer
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Figure 94.- Free turbulence: free jet and wake.
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Figure 95.- Plane wake flow; explanatory sketch.
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Figure 97.- The free jet boundary; explanatory sketch.
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Figure 98.- Free jet boundary; distribution of the longitudinal and

transverse velocity.
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Figure 100.- Determination of the profile drag according to Betz.
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Figure 102.- The stability investigation of the Couette flow.
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Figure 103.- The neutral stability curve as result of a stability:
investigation (schematic).
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Figure 104.- Basic flow without and with inflection point.
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Figure 105.- Neutral stability curves for velocity profiles without and
with inflection point (schematic).
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U = Transition point

Figure 106.- Wing profile with pressure distribution.
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Figure 107.- Approximation of a velocity
profile by a polygon.
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Figure 108.- Streamline pattern and velocity distribution of the plate
boundary layer for neutrally stable disturbance U(y) = basic flow;
u(y) = U(y) + u' (x,y,t) = disturbed velocity distributiol;

A = 27/a = wave length of the disturbance.



130 ' NACA TM No. 1218

77727/ 7/777/77

—

v J{ﬁ’ vy-mmq [ Heousr, (‘2.5]’ = -G479

Y . i ghigriatiay Rk

? 7 N

J as 7 h N

s G N

6“ r__ ;7—_—. e e o - R ?. —]

1/ —u -l _— / LA Jadl‘ﬂzz‘

as 10 -025 o 228 45 -4+ -2 o 2 4
Basic flow Disturbance amplitude Energy balance

Parameters of the disturbance:
Wave length x = 18,5 6; ab= 0.466
Velocity of wave propagation Cp = 0.35 Uy,

Angular frequency By = 2,.;{ 0.163 =2 >3 EL%E‘. = 803 .

Figure 109.- Neutral disturbance for the friction layer on the flat plate.

Amplitude of the disturbance velocity:
W (x,5,t) = uy(y) cos (x - Bpt) - ugly) sin (x - BLb).
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Figure 110.- Neutral stability curve for the friction layer on the flat
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Figure 113.- Stability calculation for the elliptic cylinder of axis
ratio aj/by = 4.
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Figure 114.- Result of the stability calculation for the elliptic cylinder
of axis ratio a‘l/bl =4,
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Re =197 105 210° i Flat plate

A = laminar separation point (independent of Re = Uﬁ;t)

M = maximum velocity of the potential flow.

Figure 115.- The position of the instability point as a function of the
Reynolds number for the elliptic cylinders of axis ratios
al/blz l, 2, 4, 8.
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Figure 116.- The position of the instability point as a function of the
Beynolds number for a Joukowsky profile for lift coefficients of
c:a =0 to cg = 1.



